High-efficient photo-electron transport channel in SiC constructed by depositing cocatalysts selectively on specific surface sites for visible-light H2 production

Control cocatalyst location on a metal-free semiconductor to promote surface charge transfer for decreasing the electron-hole recombination is crucial for enhancing solar energy conversion. Based on the findings that some metals have an affinity for bonding with the specific atoms of polar semicondu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-04, Vol.108 (16)
Hauptverfasser: Wang, Da, Peng, Yuan, Wang, Qi, Pan, Nanyan, Guo, Zhongnan, Yuan, Wenxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Control cocatalyst location on a metal-free semiconductor to promote surface charge transfer for decreasing the electron-hole recombination is crucial for enhancing solar energy conversion. Based on the findings that some metals have an affinity for bonding with the specific atoms of polar semiconductors at a heterostructure interface, we herein control Pt deposition selectively on the Si sites of a micro-SiC photocatalyst surface via in-situ photo-depositing. The Pt-Si bond forming on the interface constructs an excellent channel, which is responsible for accelerating photo-electron transfer from SiC to Pt and then reducing water under visible-light. The hydrogen production is enhanced by two orders of magnitude higher than that of bare SiC, and 2.5 times higher than that of random-depositing nano-Pt with the same loading amount.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4947196