Orientation of glycine on silver nanoparticles: SERS studies
Surface enhanced Raman scattering (SERS) studies of glycine (Gly) adsorbed on silver nanoparticles (AgNPs) was investigated by experimental and density functional theory approach. The AgNPs were prepared and characterized. The molecular structure of the Gly and Gly adsorbed on silver cluster were op...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface enhanced Raman scattering (SERS) studies of glycine (Gly) adsorbed on silver nanoparticles (AgNPs) was investigated by experimental and density functional theory approach. The AgNPs were prepared and characterized. The molecular structure of the Gly and Gly adsorbed on silver cluster were optimized by the DFT/B3PW91 method with LanL2DZ basis set. The calculated and observed vibrational frequencies were assigned on the basis of potential energy distribution calculation. The perpendicular orientation of Gly on the silver surface was predicted from the enhanced Raman signal correspond to the C=O and C-H stretching vibrational modes. The frontier molecular orbitals analysis and molecular electrostatic potential calculation were carried out. The reduced band gap value was obtained for Gly adsorbed on silver nanoparticles, which paves the way for designing the bio molecular devices. The first order hyperpolarizability value for Ag-Gly is 461 times greater than the urea. Thus, Ag-Gly is a promising candidate for NLO materials. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4946425 |