Biosorption of toxic lead (II) ions using tomato waste (Solanum lycopersicum) activated by NaOH
This research present to uptake lead (II) ion from aqueous solutions by activated tomato waste. Biosorbent were characterized by applying Fourier Transform Infrared Spectroscopy (FTIR) and Surface Area Analyzer (SAA). The biosorption investigated with parameters including the concentration of NaOH,...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research present to uptake lead (II) ion from aqueous solutions by activated tomato waste. Biosorbent were characterized by applying Fourier Transform Infrared Spectroscopy (FTIR) and Surface Area Analyzer (SAA). The biosorption investigated with parameters including the concentration of NaOH, effects of solution pH, biosorbent dosage, contact time,and initial metal concentration. Experimental data were analyzed in terms of two kinetic model such us the pseudo-first order and pseudo-second order. Langmuir and Freundlich isotherm models were applied todescribe the biosorption process. According to the experiment, the optimum concentration of NaOH was achieved at 0.1 M. The maximum % lead (II) removal was achieved at pH 4 with 94.5%. Optimum biosorbentdosage were found as 0.1 g/25 mL solution while optimum contact time were found at 75 minutes. The results showed that the biosorption processes of Lead (II) followed pseudo-second order kinetics. Langmuir adsorption isotherm was found fit the adsorption data with amaximum capacity of 24.079 mg/g with anadsorption energy of 28.046 kJ/mol. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4941488 |