Rotating 2N-vortex solutions to the Gross-Pitaevskii equation on S 2
We establish the existence of rotating solutions to the Gross-Pitaevskii equation \documentclass[12pt]{minimal}\begin{document}$iU_t=\Delta U + \frac{1}{\varepsilon ^2}(1-|U|^2)U$\end{document} i U t = Δ U + 1 ɛ 2 ( 1 − | U | 2 ) U posed on S 2, that is for \documentclass[12pt]{minimal}\begin{docume...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2012-08, Vol.53 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish the existence of rotating solutions to the Gross-Pitaevskii equation
\documentclass[12pt]{minimal}\begin{document}$iU_t=\Delta U + \frac{1}{\varepsilon ^2}(1-|U|^2)U$\end{document}
i
U
t
=
Δ
U
+
1
ɛ
2
(
1
−
|
U
|
2
)
U
posed on S
2, that is for
\documentclass[12pt]{minimal}\begin{document}$U:S^2\times \mathbb {R}\rightarrow \mathbb {C}.$\end{document}
U
:
S
2
×
R
→
C
.
These solutions possess vortices that for all time follow the vortex paths of known “relative equilibria” to the point-vortex problem on the two-sphere in the asymptotic regime ɛ ≪ 1. The approach is variational, based on minimization of the Ginzburg-Landau energy subject to a momentum constraint. We also establish orbital stability within a class of symmetric initial data. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4739748 |