Persistent energy flow for a stochastic wave equation model in nonequilibrium statistical mechanics
We consider a one-dimensional partial differential equation system modeling heat flow around a ring. The system includes a Klein-Gordon wave equation for a field satisfying spatial periodic boundary conditions, as well as Ornstein-Uhlenbeck stochastic differential equations with finite rank dissipat...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2012-09, Vol.53 (9), p.1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a one-dimensional partial differential equation system modeling heat flow around a ring. The system includes a Klein-Gordon wave equation for a field satisfying spatial periodic boundary conditions, as well as Ornstein-Uhlenbeck stochastic differential equations with finite rank dissipation and stochastic driving terms modeling heat baths. There is an energy flow around the ring. In the case of a linear field with different (fixed) bath temperatures, the energy flow can persist even when the interaction with the baths is turned off. A simple example is given. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4728986 |