Persistent energy flow for a stochastic wave equation model in nonequilibrium statistical mechanics

We consider a one-dimensional partial differential equation system modeling heat flow around a ring. The system includes a Klein-Gordon wave equation for a field satisfying spatial periodic boundary conditions, as well as Ornstein-Uhlenbeck stochastic differential equations with finite rank dissipat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2012-09, Vol.53 (9), p.1
1. Verfasser: Thomas, Lawrence E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a one-dimensional partial differential equation system modeling heat flow around a ring. The system includes a Klein-Gordon wave equation for a field satisfying spatial periodic boundary conditions, as well as Ornstein-Uhlenbeck stochastic differential equations with finite rank dissipation and stochastic driving terms modeling heat baths. There is an energy flow around the ring. In the case of a linear field with different (fixed) bath temperatures, the energy flow can persist even when the interaction with the baths is turned off. A simple example is given.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4728986