Electron-acoustic solitary waves in the presence of a suprathermal electron component

The nonlinear dynamics of electron-acoustic localized structures in a collisionless and unmagnetized plasma consisting of “cool” inertial electrons, “hot” electrons having a kappa distribution, and stationary ions is studied. The inertialess hot electron distribution thus has a long-tailed suprather...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2011-07, Vol.18 (7), p.072902-072902-10
Hauptverfasser: Danehkar, Ashkbiz, Saini, Nareshpal Singh, Hellberg, Manfred A., Kourakis, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonlinear dynamics of electron-acoustic localized structures in a collisionless and unmagnetized plasma consisting of “cool” inertial electrons, “hot” electrons having a kappa distribution, and stationary ions is studied. The inertialess hot electron distribution thus has a long-tailed suprathermal (non-Maxwellian) form. A dispersion relation is derived for linear electron-acoustic waves. They show a strong dependence of the charge screening mechanism on excess suprathermality (through κ). A nonlinear pseudopotential technique is employed to investigate the occurrence of stationary-profile solitary waves, focusing on how their characteristics depend on the spectral index κ, and the hot-to-cool electron temperature and density ratios. Only negative polarity solitary waves are found to exist, in a parameter region which becomes narrower as deviation from the Maxwellian (suprathermality) increases, while the soliton amplitude at fixed soliton speed increases. However, for a constant value of the true Mach number, the amplitude decreases for decreasing κ.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.3606365