New representations of π and Dirac delta using the nonextensive-statistical-mechanics q -exponential function
We present a generalization of the representation in plane waves of Dirac delta, δ ( x ) = ( 1 / 2 π ) ∫ − ∞ ∞ e − i k x d k , namely, δ ( x ) = [ ( 2 − q ) / 2 π ] ∫ − ∞ ∞ e q − i k x d k , using the non-extensive-statistical-mechanics q -exponential function, e q i x ≡ [ 1 + ( 1 − q ) i x ] 1 / (...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2010-06, Vol.51 (6), p.063304-063304-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a generalization of the representation in plane waves of Dirac delta,
δ
(
x
)
=
(
1
/
2
π
)
∫
−
∞
∞
e
−
i
k
x
d
k
, namely,
δ
(
x
)
=
[
(
2
−
q
)
/
2
π
]
∫
−
∞
∞
e
q
−
i
k
x
d
k
, using the non-extensive-statistical-mechanics
q
-exponential function,
e
q
i
x
≡
[
1
+
(
1
−
q
)
i
x
]
1
/
(
1
−
q
)
with
e
1
i
x
≡
e
i
x
,
x
being any real number, for real values of
q
within the interval
[
1
,
2
[
. Concomitantly, with the development of these new representations of Dirac delta, we also present two new families of representations of the transcendental number
π
. Incidentally, we remark that the
q
-plane wave form which emerges, namely,
e
q
i
k
x
, is normalizable for
1
<
q
<
3
, in contrast to the standard one,
e
i
k
x
, which is not. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.3431981 |