Comment on “Approximate ternary Jordan derivations on Banach ternary algebras” [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)]

Let A be a Banach ternary algebra over C and X a ternary Banach A -module. A C -linear mapping D : ( A , [   ] A ) → ( X , [   ] X ) is called a ternary Jordan derivation if D ( [ x x x ] A ) = [ D ( x ) x x ] X + [ x D ( x ) x ] X + [ x x D ( x ) ] X for all x ∊ A . [Bavand Savadkouhi et al. , J. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2010-04, Vol.51 (4), p.044102-044102-7
Hauptverfasser: Park, Choonkil, Gordji, M. Eshaghi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a Banach ternary algebra over C and X a ternary Banach A -module. A C -linear mapping D : ( A , [   ] A ) → ( X , [   ] X ) is called a ternary Jordan derivation if D ( [ x x x ] A ) = [ D ( x ) x x ] X + [ x D ( x ) x ] X + [ x x D ( x ) ] X for all x ∊ A . [Bavand Savadkouhi et al. , J. Math. Phys. 50, 042303 (2009)] investigated ternary Jordan derivations on Banach ternary algebras, associated with the following functional equation: f ( ( x + y + z ) / 4 ) + f ( ( 3 x − y − 4 z ) / 4 ) + f ( ( 4 x + 3 z ) / 4 ) = 2 f ( x ) , and proved the generalized Ulam–Hyers stability of ternary Jordan derivations on Banach ternary algebras. The mapping f in Lemma 2.2 of Bavand Savadkouhi et al. is identically zero and all of the results are trivial. In this note, we correct the statements of the results and the proofs.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.3299295