Comment on “Approximate ternary Jordan derivations on Banach ternary algebras” [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)]
Let A be a Banach ternary algebra over C and X a ternary Banach A -module. A C -linear mapping D : ( A , [ ] A ) → ( X , [ ] X ) is called a ternary Jordan derivation if D ( [ x x x ] A ) = [ D ( x ) x x ] X + [ x D ( x ) x ] X + [ x x D ( x ) ] X for all x ∊ A . [Bavand Savadkouhi et al. , J. M...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2010-04, Vol.51 (4), p.044102-044102-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
be a Banach ternary algebra over
C
and
X
a ternary Banach
A
-module. A
C
-linear mapping
D
:
(
A
,
[
]
A
)
→
(
X
,
[
]
X
)
is called a ternary Jordan derivation if
D
(
[
x
x
x
]
A
)
=
[
D
(
x
)
x
x
]
X
+
[
x
D
(
x
)
x
]
X
+
[
x
x
D
(
x
)
]
X
for all
x
∊
A
. [Bavand Savadkouhi
et al.
, J. Math. Phys.
50, 042303 (2009)] investigated ternary Jordan derivations on Banach ternary algebras, associated with the following functional equation:
f
(
(
x
+
y
+
z
)
/
4
)
+
f
(
(
3
x
−
y
−
4
z
)
/
4
)
+
f
(
(
4
x
+
3
z
)
/
4
)
=
2
f
(
x
)
, and proved the generalized Ulam–Hyers stability of ternary Jordan derivations on Banach ternary algebras. The mapping
f
in Lemma 2.2 of Bavand Savadkouhi et al. is identically zero and all of the results are trivial. In this note, we correct the statements of the results and the proofs. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.3299295 |