The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds

We generalize the concepts of finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structures to arbitrary Riemannian manifolds. The methods are illustrated for convection cells on cylinders and Möbius strips, as well as for the splitting of the Antarctic polar vortex in the spherical strato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2010-03, Vol.20 (1), p.017505-017505-20
Hauptverfasser: Lekien, Francois, Ross, Shane D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 017505-20
container_issue 1
container_start_page 017505
container_title Chaos (Woodbury, N.Y.)
container_volume 20
creator Lekien, Francois
Ross, Shane D.
description We generalize the concepts of finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structures to arbitrary Riemannian manifolds. The methods are illustrated for convection cells on cylinders and Möbius strips, as well as for the splitting of the Antarctic polar vortex in the spherical stratosphere and a related point vortex model. We modify the FTLE computational method and accommodate unstructured meshes of triangles and tetrahedra to fit manifolds of arbitrary shape, as well as to facilitate dynamic refinement of the FTLE mesh.
doi_str_mv 10.1063/1.3278516
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_3278516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733858787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-2be4bdea6d229558f00a858ec5739d456734b48039696f85e41ef575841aa0a23</originalsourceid><addsrcrecordid>eNp9kEtLHTEUgENp8dmFf6BkVyqMJpNkktkIIvYBF9zoOuTOnHBTZpIxD9F_b-TeWqHY1TmL73wcPoROKDmjpGPn9Iy1UgnafUAHlKi-kZ1qP77sgjdUELKPDlP6TQihLRN7aL8lTJK2Fwdoc7sBPIR5KdlkFzwOFlvnXYYmuxnw6sksxYcHDI9L8OBzwhUqPuVYhlwijHiGtIGEjR-xDRH74JvrMkxuBOPxbLyzYRrTMfpkzZTg824eobvv17dXP5vVzY9fV5erZuCc56ZdA1_Xy25s639CWUKMEgoGIVk_ctFJxtdcEdZ3fWeVAE7BCikUp8YQ07Ij9HXrXWK4L5Cynl0aYJqMh1CSloxVn1Sykt-25BBDShGsXqKbTXzSlOiXrprqXdfKftlZy3qG8ZX8E7ICF1sgDW5b8n1bTa7fJNfBalsFp-8JHkL8e6yX8b_wv78_A3RwpQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733858787</pqid></control><display><type>article</type><title>The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Lekien, Francois ; Ross, Shane D.</creator><creatorcontrib>Lekien, Francois ; Ross, Shane D.</creatorcontrib><description>We generalize the concepts of finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structures to arbitrary Riemannian manifolds. The methods are illustrated for convection cells on cylinders and Möbius strips, as well as for the splitting of the Antarctic polar vortex in the spherical stratosphere and a related point vortex model. We modify the FTLE computational method and accommodate unstructured meshes of triangles and tetrahedra to fit manifolds of arbitrary shape, as well as to facilitate dynamic refinement of the FTLE mesh.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.3278516</identifier><identifier>PMID: 20370295</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>Chaos (Woodbury, N.Y.), 2010-03, Vol.20 (1), p.017505-017505-20</ispartof><rights>American Institute of Physics</rights><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-2be4bdea6d229558f00a858ec5739d456734b48039696f85e41ef575841aa0a23</citedby><cites>FETCH-LOGICAL-c444t-2be4bdea6d229558f00a858ec5739d456734b48039696f85e41ef575841aa0a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20370295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lekien, Francois</creatorcontrib><creatorcontrib>Ross, Shane D.</creatorcontrib><title>The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We generalize the concepts of finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structures to arbitrary Riemannian manifolds. The methods are illustrated for convection cells on cylinders and Möbius strips, as well as for the splitting of the Antarctic polar vortex in the spherical stratosphere and a related point vortex model. We modify the FTLE computational method and accommodate unstructured meshes of triangles and tetrahedra to fit manifolds of arbitrary shape, as well as to facilitate dynamic refinement of the FTLE mesh.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLHTEUgENp8dmFf6BkVyqMJpNkktkIIvYBF9zoOuTOnHBTZpIxD9F_b-TeWqHY1TmL73wcPoROKDmjpGPn9Iy1UgnafUAHlKi-kZ1qP77sgjdUELKPDlP6TQihLRN7aL8lTJK2Fwdoc7sBPIR5KdlkFzwOFlvnXYYmuxnw6sksxYcHDI9L8OBzwhUqPuVYhlwijHiGtIGEjR-xDRH74JvrMkxuBOPxbLyzYRrTMfpkzZTg824eobvv17dXP5vVzY9fV5erZuCc56ZdA1_Xy25s639CWUKMEgoGIVk_ctFJxtdcEdZ3fWeVAE7BCikUp8YQ07Ij9HXrXWK4L5Cynl0aYJqMh1CSloxVn1Sykt-25BBDShGsXqKbTXzSlOiXrprqXdfKftlZy3qG8ZX8E7ICF1sgDW5b8n1bTa7fJNfBalsFp-8JHkL8e6yX8b_wv78_A3RwpQ8</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Lekien, Francois</creator><creator>Ross, Shane D.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100301</creationdate><title>The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds</title><author>Lekien, Francois ; Ross, Shane D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-2be4bdea6d229558f00a858ec5739d456734b48039696f85e41ef575841aa0a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lekien, Francois</creatorcontrib><creatorcontrib>Ross, Shane D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lekien, Francois</au><au>Ross, Shane D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>20</volume><issue>1</issue><spage>017505</spage><epage>017505-20</epage><pages>017505-017505-20</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We generalize the concepts of finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structures to arbitrary Riemannian manifolds. The methods are illustrated for convection cells on cylinders and Möbius strips, as well as for the splitting of the Antarctic polar vortex in the spherical stratosphere and a related point vortex model. We modify the FTLE computational method and accommodate unstructured meshes of triangles and tetrahedra to fit manifolds of arbitrary shape, as well as to facilitate dynamic refinement of the FTLE mesh.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>20370295</pmid><doi>10.1063/1.3278516</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2010-03, Vol.20 (1), p.017505-017505-20
issn 1054-1500
1089-7682
language eng
recordid cdi_scitation_primary_10_1063_1_3278516
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20computation%20of%20finite-time%20Lyapunov%20exponents%20on%20unstructured%20meshes%20and%20for%20non-Euclidean%20manifolds&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Lekien,%20Francois&rft.date=2010-03-01&rft.volume=20&rft.issue=1&rft.spage=017505&rft.epage=017505-20&rft.pages=017505-017505-20&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.3278516&rft_dat=%3Cproquest_scita%3E733858787%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733858787&rft_id=info:pmid/20370295&rfr_iscdi=true