The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds

We generalize the concepts of finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structures to arbitrary Riemannian manifolds. The methods are illustrated for convection cells on cylinders and Möbius strips, as well as for the splitting of the Antarctic polar vortex in the spherical strato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2010-03, Vol.20 (1), p.017505-017505-20
Hauptverfasser: Lekien, Francois, Ross, Shane D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the concepts of finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structures to arbitrary Riemannian manifolds. The methods are illustrated for convection cells on cylinders and Möbius strips, as well as for the splitting of the Antarctic polar vortex in the spherical stratosphere and a related point vortex model. We modify the FTLE computational method and accommodate unstructured meshes of triangles and tetrahedra to fit manifolds of arbitrary shape, as well as to facilitate dynamic refinement of the FTLE mesh.
ISSN:1054-1500
1089-7682
DOI:10.1063/1.3278516