Strongly interacting bumps for the Schrödinger–Newton equations
We study concentrated bound states of the Schrödinger–Newton equations h 2 Δ ψ − E ( x ) ψ + U ψ = 0 , ψ > 0 , x ∊ R 3 ; Δ U + 1 2 | ψ | 2 = 0 , x ∊ R 3 ; ψ ( x ) → 0 , U ( x ) → 0 as | x | → ∞ . Moroz et al. [“An analytical approach to the Schrödinger-Newton equations,” Nonlinearity 12, 201 (199...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2009-01, Vol.50 (1), p.012905-012905-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study concentrated bound states of the Schrödinger–Newton equations
h
2
Δ
ψ
−
E
(
x
)
ψ
+
U
ψ
=
0
,
ψ
>
0
,
x
∊
R
3
;
Δ
U
+
1
2
|
ψ
|
2
=
0
,
x
∊
R
3
;
ψ
(
x
)
→
0
,
U
(
x
)
→
0
as
|
x
|
→
∞
. Moroz
et al.
[“An analytical approach to the Schrödinger-Newton equations,” Nonlinearity
12, 201 (1999)] proved the existence and uniqueness of ground states of
Δ
ψ
−
ψ
+
U
ψ
=
0
,
ψ
>
0
,
x
∊
R
3
;
Δ
U
+
1
2
|
ψ
|
2
=
0
,
x
∊
R
3
;
ψ
(
x
)
→
0
,
U
(
x
)
→
0
as
|
x
|
→
∞
. We first prove that the linearized operator around the unique ground state radial solution
(
ψ
0
,
U
0
)
with
ψ
0
(
r
)
=
(
A
e
−
r
/
r
)
(
1
+
o
(
1
)
)
as
r
=
|
x
|
→
∞
,
U
0
(
r
)
=
(
B
/
r
)
(
1
+
o
(
1
)
)
as
r
=
|
x
|
→
∞
for some
A
,
B
>
0
has a kernel whose dimension is exactly 3 (corresponding to the translational modes). Using this result we further show that if for some positive integer
K
the points
P
i
∊
R
3
,
i
=
1
,
2
…
,
K
, with
P
i
≠
P
j
for
i
≠
j
are all local minimum or local maximum or nondegenerate critical points of
E
(
P
)
, then for
h
small enough there exist solutions of the Schrödinger–Newton equations with
K
bumps which concentrate at
P
i
. We also prove that given a local maximum point
P
0
of
E
(
P
)
there exists a solution with
K
bumps which all concentrate at
P
0
and whose distances to
P
0
are at least
O
(
h
1
/
3
)
. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.3060169 |