The ( G ′ / G ) -expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics
I the present paper, we construct the traveling wave solutions involving parameters of the combined Korteweg-de Vries–modified Korteweg-de Vries equation, the reaction-diffusion equation, the compound KdV–Burgers equation, and the generalized shallow water wave equation by using a new approach, name...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2009, Vol.50 (1), p.013502-013502-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | I the present paper, we construct the traveling wave solutions involving parameters of the combined Korteweg-de Vries–modified Korteweg-de Vries equation, the reaction-diffusion equation, the compound KdV–Burgers equation, and the generalized shallow water wave equation by using a new approach, namely, the
(
G
′
/
G
)
-expansion method, where
G
=
G
(
ξ
)
satisfies a second order linear ordinary differential equation. When the parameters take special values, the solitary waves are derived from the traveling waves. The traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions, and the rational functions. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.3033750 |