Probing the strength of the system-bath interaction by three-pulsephoton echoes
We explore how the width of the three-pulse photon echo signal at long population times can be used to determine the strength of the system-bath interaction. Using simulation with finite pulses we show that a simple relation exist between the width of the echo signal, the coupling strength, and the...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2009-01, Vol.130 (2), p.024510-024510-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore how the width of the three-pulse photon echo signal at long population times can be used to determine the strength of the system-bath interaction. Using simulation with finite pulses we show that a simple relation exist between the width of the echo signal, the coupling strength, and the pulse autocorrelation. The derived model is applied to Rhodamine 6G in alcoholic solution, a paradigm system for the study of solvation dynamics, and the results are compared to conventional methods. The independently determined coupling strength forms the basis for a computationally inexpensive route to determine the entire spectral density, the key parameter when considering system-bath interactions. Our method allows us to accurately estimate the relative amplitude of fast and slow components in the correlation function using only impulsive limit simulations. We show that the peak shift significantly overestimates the amplitude of the fastest decay component for our experimental data. Changing solvent from methanol to 1-hexanol we observe a narrowing of the width of the echo profile. The changes in the echo width allow us to estimate the changes of the coupling strength in various solvents. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2990652 |