The contribution of grain boundary barriers to the electrical conductivityof titanium oxide thin films

Titanium oxide thin films were prepared by reactive magnetron sputtering. The reactive gas pulsing process was implemented to control the oxygen injection in the deposition process and, consequently, to tune the oxygen concentration in the films from pure titanium to stoichiometric Ti O 2 , maintain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2008-08, Vol.93 (6), p.064102-064102-3
Hauptverfasser: Martin, Nicolas, Besnard, Aurélien, Sthal, Fabrice, Vaz, Filipe, Nouveau, Corinne
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Titanium oxide thin films were prepared by reactive magnetron sputtering. The reactive gas pulsing process was implemented to control the oxygen injection in the deposition process and, consequently, to tune the oxygen concentration in the films from pure titanium to stoichiometric Ti O 2 , maintaining a homogeneous in-depth concentration. The electrical conductivity of the films was investigated as a function of the oxygen injection time, the metalloid concentration and temperature, in the range 90 - 600 K . The curved Arrhenius plots of the conductivity were examined taking into account the grain boundary limited transport model of Werner ( J. H. Werner [ Solid State Phenom. 37-38 , 213 ( 1994 )]) . The grain barrier heights were found to depend significantly on the oxygen supplied into the deposition process and thus, on the oxygen-to-titanium atomic ratio in the films. The analysis as a function of temperature showed that the conduction mechanism in the coatings was not solely limited by the oxygen-to-titanium atomic ratio, but also by the grain boundary scattering.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.2970034