Poincaré-Birkhoff periodic orbits for mechanical Hamiltonian systems on T T n

Here, a version of the Arnol’d conjecture, first studied by Conley and Zehnder, giving a generalization of the Poincaré-Birkhoff last geometrical theorem, is proved inside Viterbo’s framework of the generating functions quadratic at infinity. We give brief overviews of some tools that are often util...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2006-07, Vol.47 (7), p.072701-072701-15
Hauptverfasser: Bernardi, Olga, Cardin, Franco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, a version of the Arnol’d conjecture, first studied by Conley and Zehnder, giving a generalization of the Poincaré-Birkhoff last geometrical theorem, is proved inside Viterbo’s framework of the generating functions quadratic at infinity. We give brief overviews of some tools that are often utilized in symplectic topology.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.2211930