Seiberg-Witten equations in R 4 : Lie symmetries, particular solutions, integrability
It is shown that the 11-parameter automorphism group of Lie algebra of four-dimensional Euclidean group is a maximal Lie symmetries group of the Seiberg-Witten equations in R 4 . Particular explicit solutions which are invariant under SO(3) subgroups of the maximal Lie symmetries group are construct...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2005-07, Vol.46 (7), p.072304-072304-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that the 11-parameter automorphism group of Lie algebra of four-dimensional Euclidean group is a maximal Lie symmetries group of the Seiberg-Witten equations in
R
4
. Particular explicit solutions which are invariant under SO(3) subgroups of the maximal Lie symmetries group are constructed. It is established that Seiberg-Witten equations do not possess the Painlevé property. Nevertheless, SO(3) invariant solutions obtained are turned to admit a characteristic singularity structure. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.1947121 |