Seiberg-Witten equations in R 4 : Lie symmetries, particular solutions, integrability

It is shown that the 11-parameter automorphism group of Lie algebra of four-dimensional Euclidean group is a maximal Lie symmetries group of the Seiberg-Witten equations in R 4 . Particular explicit solutions which are invariant under SO(3) subgroups of the maximal Lie symmetries group are construct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2005-07, Vol.46 (7), p.072304-072304-11
1. Verfasser: Aleynikov, Dmitriy V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that the 11-parameter automorphism group of Lie algebra of four-dimensional Euclidean group is a maximal Lie symmetries group of the Seiberg-Witten equations in R 4 . Particular explicit solutions which are invariant under SO(3) subgroups of the maximal Lie symmetries group are constructed. It is established that Seiberg-Witten equations do not possess the Painlevé property. Nevertheless, SO(3) invariant solutions obtained are turned to admit a characteristic singularity structure.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.1947121