Representation Theory of Local Current Algebras
We prove the following theorem: Every finite‐dimensional irreducible representation of the local current algebra [F ρ ( k 1 ), F σ ( k 2 )]=e ρσ τ F τ ( k 1 + k 2 ) , where the {e ρσ τ } are the structure constants of a semisimple Lie algebra L, has the form F ρ ( k )→ ∑ i=1 N e ikx i T ρ i , where...
Gespeichert in:
Veröffentlicht in: | J. Math. Phys. (N. Y.), 8: 1954-6(Oct. 1967) 8: 1954-6(Oct. 1967), 1967-01, Vol.8 (10), p.1954-1956 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the following theorem: Every finite‐dimensional irreducible representation of the local current algebra
[F
ρ
(
k
1
), F
σ
(
k
2
)]=e
ρσ
τ
F
τ
(
k
1
+
k
2
)
,
where the
{e
ρσ
τ
}
are the structure constants of a semisimple Lie algebra L, has the form
F
ρ
(
k
)→
∑
i=1
N
e
ikx
i
T
ρ
i
,
where
T
ρ
i
is a finite‐dimensional representation of L, and for i ≠ j, xi
;
T
ρ
i
commutes with
T
σ
j
for all ρ and σ. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.1705109 |