Representation Theory of Local Current Algebras

We prove the following theorem: Every finite‐dimensional irreducible representation of the local current algebra [F ρ ( k 1 ), F σ ( k 2 )]=e ρσ τ F τ ( k 1 + k 2 ) , where the {e ρσ τ } are the structure constants of a semisimple Lie algebra L, has the form F ρ ( k )→ ∑ i=1 N e ikx i T ρ i , where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Math. Phys. (N. Y.), 8: 1954-6(Oct. 1967) 8: 1954-6(Oct. 1967), 1967-01, Vol.8 (10), p.1954-1956
1. Verfasser: Roffman, Eric H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the following theorem: Every finite‐dimensional irreducible representation of the local current algebra [F ρ ( k 1 ), F σ ( k 2 )]=e ρσ τ F τ ( k 1 + k 2 ) , where the {e ρσ τ } are the structure constants of a semisimple Lie algebra L, has the form F ρ ( k )→ ∑ i=1 N e ikx i T ρ i , where T ρ i is a finite‐dimensional representation of L, and for i ≠ j, xi ; T ρ i commutes with T σ j for all ρ and σ.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.1705109