Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group

The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn ) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En . The solutions correspond to the hyperspheric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mathematical Physics (New York) (U.S.) 1965-04, Vol.6 (4), p.578-583
Hauptverfasser: Alcarás, J. A. Castilho, Ferreira, P. Leal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 583
container_issue 4
container_start_page 578
container_title Journal of Mathematical Physics (New York) (U.S.)
container_volume 6
creator Alcarás, J. A. Castilho
Ferreira, P. Leal
description The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn ) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En . The solutions correspond to the hyperspherical harmonics of the mathematical literature and are of interest for problems exhibiting invariance under a certain Rn . The method is also applied to derive a basis for the infinite‐dimensional irreducible representations of the homogeneous Lorentz group if we then look for homogeneous functions in the variables of the corresponding pseudo‐Euclidean space.
doi_str_mv 10.1063/1.1704309
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1704309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e443871c069f75e17f5a2dc5ef69ff3bc77bb1f06585e34805fe02377352e23</originalsourceid><addsrcrecordid>eNqdkMFLwzAYxYMoOKcH_4PgTaEzaZKmPc4xt8FAmN5Dm37ZKltTklTQk3-67Tr07unjffzeg_cQuqVkQknCHumESsIZyc7QiJI0i2Qi0nM0IiSOo5in6SW68v6dEEpTzkfoe7rfQuHySuOZrX1wrQ6VrbE1OOwAP-W-8thYd1Qr56BsdVXsAW-gceChDnnP-96wsYPAC2fbxuO8Ln-tS3uwW6jBth6vret8XwN2jS5Mvvdwc7pj9Po8f5sto_XLYjWbriPNRBYi4JylkmqSZEYKoNKIPC61ANM9DCu0lEVBDenaCmA8JcIAiZmUTMQQszG6G1KtD5Xyugqgd9rWNeigeEITTkQH3Q-QdtZ7B0Y1rjrk7lNRovp1FVWndTv2YWD7rGPr_8Ef1v2BqikN-wFRFIn4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group</title><source>AIP Digital Archive</source><creator>Alcarás, J. A. Castilho ; Ferreira, P. Leal</creator><creatorcontrib>Alcarás, J. A. Castilho ; Ferreira, P. Leal ; Instituto de Fisica Teorica, Sao Paulo, Brazil</creatorcontrib><description>The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn ) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En . The solutions correspond to the hyperspherical harmonics of the mathematical literature and are of interest for problems exhibiting invariance under a certain Rn . The method is also applied to derive a basis for the infinite‐dimensional irreducible representations of the homogeneous Lorentz group if we then look for homogeneous functions in the variables of the corresponding pseudo‐Euclidean space.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1704309</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>Elementary Particles and Radiations ; GROUP THEORY ; INVARIANCE PRINCIPLE ; IRREDUCIBLE REPRESENTATION ; LORENTZ TRANSFORMATIONS ; MATHEMATICS ; MATRICES ; PHYSICS ; POLYNOMIALS ; RELATIVITY THEORY ; ROTATION ; ROTATION GROUP ; SPHERICAL HARMONICS</subject><ispartof>Journal of Mathematical Physics (New York) (U.S.), 1965-04, Vol.6 (4), p.578-583</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e443871c069f75e17f5a2dc5ef69ff3bc77bb1f06585e34805fe02377352e23</citedby><cites>FETCH-LOGICAL-c359t-e443871c069f75e17f5a2dc5ef69ff3bc77bb1f06585e34805fe02377352e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1704309$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1559,27924,27925,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4616405$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alcarás, J. A. Castilho</creatorcontrib><creatorcontrib>Ferreira, P. Leal</creatorcontrib><creatorcontrib>Instituto de Fisica Teorica, Sao Paulo, Brazil</creatorcontrib><title>Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group</title><title>Journal of Mathematical Physics (New York) (U.S.)</title><description>The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn ) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En . The solutions correspond to the hyperspherical harmonics of the mathematical literature and are of interest for problems exhibiting invariance under a certain Rn . The method is also applied to derive a basis for the infinite‐dimensional irreducible representations of the homogeneous Lorentz group if we then look for homogeneous functions in the variables of the corresponding pseudo‐Euclidean space.</description><subject>Elementary Particles and Radiations</subject><subject>GROUP THEORY</subject><subject>INVARIANCE PRINCIPLE</subject><subject>IRREDUCIBLE REPRESENTATION</subject><subject>LORENTZ TRANSFORMATIONS</subject><subject>MATHEMATICS</subject><subject>MATRICES</subject><subject>PHYSICS</subject><subject>POLYNOMIALS</subject><subject>RELATIVITY THEORY</subject><subject>ROTATION</subject><subject>ROTATION GROUP</subject><subject>SPHERICAL HARMONICS</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1965</creationdate><recordtype>article</recordtype><recordid>eNqdkMFLwzAYxYMoOKcH_4PgTaEzaZKmPc4xt8FAmN5Dm37ZKltTklTQk3-67Tr07unjffzeg_cQuqVkQknCHumESsIZyc7QiJI0i2Qi0nM0IiSOo5in6SW68v6dEEpTzkfoe7rfQuHySuOZrX1wrQ6VrbE1OOwAP-W-8thYd1Qr56BsdVXsAW-gceChDnnP-96wsYPAC2fbxuO8Ln-tS3uwW6jBth6vret8XwN2jS5Mvvdwc7pj9Po8f5sto_XLYjWbriPNRBYi4JylkmqSZEYKoNKIPC61ANM9DCu0lEVBDenaCmA8JcIAiZmUTMQQszG6G1KtD5Xyugqgd9rWNeigeEITTkQH3Q-QdtZ7B0Y1rjrk7lNRovp1FVWndTv2YWD7rGPr_8Ef1v2BqikN-wFRFIn4</recordid><startdate>196504</startdate><enddate>196504</enddate><creator>Alcarás, J. A. Castilho</creator><creator>Ferreira, P. Leal</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>196504</creationdate><title>Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group</title><author>Alcarás, J. A. Castilho ; Ferreira, P. Leal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e443871c069f75e17f5a2dc5ef69ff3bc77bb1f06585e34805fe02377352e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1965</creationdate><topic>Elementary Particles and Radiations</topic><topic>GROUP THEORY</topic><topic>INVARIANCE PRINCIPLE</topic><topic>IRREDUCIBLE REPRESENTATION</topic><topic>LORENTZ TRANSFORMATIONS</topic><topic>MATHEMATICS</topic><topic>MATRICES</topic><topic>PHYSICS</topic><topic>POLYNOMIALS</topic><topic>RELATIVITY THEORY</topic><topic>ROTATION</topic><topic>ROTATION GROUP</topic><topic>SPHERICAL HARMONICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcarás, J. A. Castilho</creatorcontrib><creatorcontrib>Ferreira, P. Leal</creatorcontrib><creatorcontrib>Instituto de Fisica Teorica, Sao Paulo, Brazil</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Mathematical Physics (New York) (U.S.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alcarás, J. A. Castilho</au><au>Ferreira, P. Leal</au><aucorp>Instituto de Fisica Teorica, Sao Paulo, Brazil</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group</atitle><jtitle>Journal of Mathematical Physics (New York) (U.S.)</jtitle><date>1965-04</date><risdate>1965</risdate><volume>6</volume><issue>4</issue><spage>578</spage><epage>583</epage><pages>578-583</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn ) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En . The solutions correspond to the hyperspherical harmonics of the mathematical literature and are of interest for problems exhibiting invariance under a certain Rn . The method is also applied to derive a basis for the infinite‐dimensional irreducible representations of the homogeneous Lorentz group if we then look for homogeneous functions in the variables of the corresponding pseudo‐Euclidean space.</abstract><doi>10.1063/1.1704309</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of Mathematical Physics (New York) (U.S.), 1965-04, Vol.6 (4), p.578-583
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_1704309
source AIP Digital Archive
subjects Elementary Particles and Radiations
GROUP THEORY
INVARIANCE PRINCIPLE
IRREDUCIBLE REPRESENTATION
LORENTZ TRANSFORMATIONS
MATHEMATICS
MATRICES
PHYSICS
POLYNOMIALS
RELATIVITY THEORY
ROTATION
ROTATION GROUP
SPHERICAL HARMONICS
title Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20Construction%20of%20the%20Basis%20for%20the%20Irreducible%20Representations%20of%20Rotation%20Groups%20and%20for%20the%20Homogeneous%20Lorentz%20Group&rft.jtitle=Journal%20of%20Mathematical%20Physics%20(New%20York)%20(U.S.)&rft.au=Alcar%C3%A1s,%20J.%20A.%20Castilho&rft.aucorp=Instituto%20de%20Fisica%20Teorica,%20Sao%20Paulo,%20Brazil&rft.date=1965-04&rft.volume=6&rft.issue=4&rft.spage=578&rft.epage=583&rft.pages=578-583&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1704309&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true