Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group
The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn ) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En . The solutions correspond to the hyperspheric...
Gespeichert in:
Veröffentlicht in: | Journal of Mathematical Physics (New York) (U.S.) 1965-04, Vol.6 (4), p.578-583 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 583 |
---|---|
container_issue | 4 |
container_start_page | 578 |
container_title | Journal of Mathematical Physics (New York) (U.S.) |
container_volume | 6 |
creator | Alcarás, J. A. Castilho Ferreira, P. Leal |
description | The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn
) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En
. The solutions correspond to the hyperspherical harmonics of the mathematical literature and are of interest for problems exhibiting invariance under a certain Rn
. The method is also applied to derive a basis for the infinite‐dimensional irreducible representations of the homogeneous Lorentz group if we then look for homogeneous functions in the variables of the corresponding pseudo‐Euclidean space. |
doi_str_mv | 10.1063/1.1704309 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1704309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e443871c069f75e17f5a2dc5ef69ff3bc77bb1f06585e34805fe02377352e23</originalsourceid><addsrcrecordid>eNqdkMFLwzAYxYMoOKcH_4PgTaEzaZKmPc4xt8FAmN5Dm37ZKltTklTQk3-67Tr07unjffzeg_cQuqVkQknCHumESsIZyc7QiJI0i2Qi0nM0IiSOo5in6SW68v6dEEpTzkfoe7rfQuHySuOZrX1wrQ6VrbE1OOwAP-W-8thYd1Qr56BsdVXsAW-gceChDnnP-96wsYPAC2fbxuO8Ln-tS3uwW6jBth6vret8XwN2jS5Mvvdwc7pj9Po8f5sto_XLYjWbriPNRBYi4JylkmqSZEYKoNKIPC61ANM9DCu0lEVBDenaCmA8JcIAiZmUTMQQszG6G1KtD5Xyugqgd9rWNeigeEITTkQH3Q-QdtZ7B0Y1rjrk7lNRovp1FVWndTv2YWD7rGPr_8Ef1v2BqikN-wFRFIn4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group</title><source>AIP Digital Archive</source><creator>Alcarás, J. A. Castilho ; Ferreira, P. Leal</creator><creatorcontrib>Alcarás, J. A. Castilho ; Ferreira, P. Leal ; Instituto de Fisica Teorica, Sao Paulo, Brazil</creatorcontrib><description>The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn
) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En
. The solutions correspond to the hyperspherical harmonics of the mathematical literature and are of interest for problems exhibiting invariance under a certain Rn
. The method is also applied to derive a basis for the infinite‐dimensional irreducible representations of the homogeneous Lorentz group if we then look for homogeneous functions in the variables of the corresponding pseudo‐Euclidean space.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1704309</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>Elementary Particles and Radiations ; GROUP THEORY ; INVARIANCE PRINCIPLE ; IRREDUCIBLE REPRESENTATION ; LORENTZ TRANSFORMATIONS ; MATHEMATICS ; MATRICES ; PHYSICS ; POLYNOMIALS ; RELATIVITY THEORY ; ROTATION ; ROTATION GROUP ; SPHERICAL HARMONICS</subject><ispartof>Journal of Mathematical Physics (New York) (U.S.), 1965-04, Vol.6 (4), p.578-583</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e443871c069f75e17f5a2dc5ef69ff3bc77bb1f06585e34805fe02377352e23</citedby><cites>FETCH-LOGICAL-c359t-e443871c069f75e17f5a2dc5ef69ff3bc77bb1f06585e34805fe02377352e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1704309$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1559,27924,27925,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4616405$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alcarás, J. A. Castilho</creatorcontrib><creatorcontrib>Ferreira, P. Leal</creatorcontrib><creatorcontrib>Instituto de Fisica Teorica, Sao Paulo, Brazil</creatorcontrib><title>Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group</title><title>Journal of Mathematical Physics (New York) (U.S.)</title><description>The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn
) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En
. The solutions correspond to the hyperspherical harmonics of the mathematical literature and are of interest for problems exhibiting invariance under a certain Rn
. The method is also applied to derive a basis for the infinite‐dimensional irreducible representations of the homogeneous Lorentz group if we then look for homogeneous functions in the variables of the corresponding pseudo‐Euclidean space.</description><subject>Elementary Particles and Radiations</subject><subject>GROUP THEORY</subject><subject>INVARIANCE PRINCIPLE</subject><subject>IRREDUCIBLE REPRESENTATION</subject><subject>LORENTZ TRANSFORMATIONS</subject><subject>MATHEMATICS</subject><subject>MATRICES</subject><subject>PHYSICS</subject><subject>POLYNOMIALS</subject><subject>RELATIVITY THEORY</subject><subject>ROTATION</subject><subject>ROTATION GROUP</subject><subject>SPHERICAL HARMONICS</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1965</creationdate><recordtype>article</recordtype><recordid>eNqdkMFLwzAYxYMoOKcH_4PgTaEzaZKmPc4xt8FAmN5Dm37ZKltTklTQk3-67Tr07unjffzeg_cQuqVkQknCHumESsIZyc7QiJI0i2Qi0nM0IiSOo5in6SW68v6dEEpTzkfoe7rfQuHySuOZrX1wrQ6VrbE1OOwAP-W-8thYd1Qr56BsdVXsAW-gceChDnnP-96wsYPAC2fbxuO8Ln-tS3uwW6jBth6vret8XwN2jS5Mvvdwc7pj9Po8f5sto_XLYjWbriPNRBYi4JylkmqSZEYKoNKIPC61ANM9DCu0lEVBDenaCmA8JcIAiZmUTMQQszG6G1KtD5Xyugqgd9rWNeigeEITTkQH3Q-QdtZ7B0Y1rjrk7lNRovp1FVWndTv2YWD7rGPr_8Ef1v2BqikN-wFRFIn4</recordid><startdate>196504</startdate><enddate>196504</enddate><creator>Alcarás, J. A. Castilho</creator><creator>Ferreira, P. Leal</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>196504</creationdate><title>Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group</title><author>Alcarás, J. A. Castilho ; Ferreira, P. Leal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e443871c069f75e17f5a2dc5ef69ff3bc77bb1f06585e34805fe02377352e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1965</creationdate><topic>Elementary Particles and Radiations</topic><topic>GROUP THEORY</topic><topic>INVARIANCE PRINCIPLE</topic><topic>IRREDUCIBLE REPRESENTATION</topic><topic>LORENTZ TRANSFORMATIONS</topic><topic>MATHEMATICS</topic><topic>MATRICES</topic><topic>PHYSICS</topic><topic>POLYNOMIALS</topic><topic>RELATIVITY THEORY</topic><topic>ROTATION</topic><topic>ROTATION GROUP</topic><topic>SPHERICAL HARMONICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcarás, J. A. Castilho</creatorcontrib><creatorcontrib>Ferreira, P. Leal</creatorcontrib><creatorcontrib>Instituto de Fisica Teorica, Sao Paulo, Brazil</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Mathematical Physics (New York) (U.S.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alcarás, J. A. Castilho</au><au>Ferreira, P. Leal</au><aucorp>Instituto de Fisica Teorica, Sao Paulo, Brazil</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group</atitle><jtitle>Journal of Mathematical Physics (New York) (U.S.)</jtitle><date>1965-04</date><risdate>1965</risdate><volume>6</volume><issue>4</issue><spage>578</spage><epage>583</epage><pages>578-583</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn
) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En
. The solutions correspond to the hyperspherical harmonics of the mathematical literature and are of interest for problems exhibiting invariance under a certain Rn
. The method is also applied to derive a basis for the infinite‐dimensional irreducible representations of the homogeneous Lorentz group if we then look for homogeneous functions in the variables of the corresponding pseudo‐Euclidean space.</abstract><doi>10.1063/1.1704309</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of Mathematical Physics (New York) (U.S.), 1965-04, Vol.6 (4), p.578-583 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1704309 |
source | AIP Digital Archive |
subjects | Elementary Particles and Radiations GROUP THEORY INVARIANCE PRINCIPLE IRREDUCIBLE REPRESENTATION LORENTZ TRANSFORMATIONS MATHEMATICS MATRICES PHYSICS POLYNOMIALS RELATIVITY THEORY ROTATION ROTATION GROUP SPHERICAL HARMONICS |
title | Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20Construction%20of%20the%20Basis%20for%20the%20Irreducible%20Representations%20of%20Rotation%20Groups%20and%20for%20the%20Homogeneous%20Lorentz%20Group&rft.jtitle=Journal%20of%20Mathematical%20Physics%20(New%20York)%20(U.S.)&rft.au=Alcar%C3%A1s,%20J.%20A.%20Castilho&rft.aucorp=Instituto%20de%20Fisica%20Teorica,%20Sao%20Paulo,%20Brazil&rft.date=1965-04&rft.volume=6&rft.issue=4&rft.spage=578&rft.epage=583&rft.pages=578-583&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1704309&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |