Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group

The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn ) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En . The solutions correspond to the hyperspheric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mathematical Physics (New York) (U.S.) 1965-04, Vol.6 (4), p.578-583
Hauptverfasser: Alcarás, J. A. Castilho, Ferreira, P. Leal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn ) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En . The solutions correspond to the hyperspherical harmonics of the mathematical literature and are of interest for problems exhibiting invariance under a certain Rn . The method is also applied to derive a basis for the infinite‐dimensional irreducible representations of the homogeneous Lorentz group if we then look for homogeneous functions in the variables of the corresponding pseudo‐Euclidean space.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.1704309