Algebraic Construction of the Basis for the Irreducible Representations of Rotation Groups and for the Homogeneous Lorentz Group
The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn ) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En . The solutions correspond to the hyperspheric...
Gespeichert in:
Veröffentlicht in: | Journal of Mathematical Physics (New York) (U.S.) 1965-04, Vol.6 (4), p.578-583 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The basic functions for a class of the irreducible representations of the rotation groups in n dimensions (Rn
) are explicitly constructed by an algebraic method in which the basic functions are taken to be homogeneous polynomials in the variables of En
. The solutions correspond to the hyperspherical harmonics of the mathematical literature and are of interest for problems exhibiting invariance under a certain Rn
. The method is also applied to derive a basis for the infinite‐dimensional irreducible representations of the homogeneous Lorentz group if we then look for homogeneous functions in the variables of the corresponding pseudo‐Euclidean space. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.1704309 |