Invariants of the equations of wave mechanics: Rigid rotator and symmetric top

Applying the systematic method discussed in previous papers, we derive the invariants and the groups of the time‐dependent Schrödinger equations for the rigid rotator and the symmetric top. The groups for these systems are found to be SO(3,2) (rigid rotator) and SU(2,2) (symmetric top). For the case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1973-11, Vol.14 (11), p.1527-1531
Hauptverfasser: Anderson, Robert L., Kumei, Sukeyuki, Wulfman, Carl E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying the systematic method discussed in previous papers, we derive the invariants and the groups of the time‐dependent Schrödinger equations for the rigid rotator and the symmetric top. The groups for these systems are found to be SO(3,2) (rigid rotator) and SU(2,2) (symmetric top). For the case of the symmetric top, it is found that under the symmetry breaking I 1 = I 2 = I 3 → I 1 = I 2 ≠ I 3, where I 1, I 2, and I 3 are the moments of inertia of the top, two of the time‐independent constants of the motion become time‐dependent constants of the motion.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.1666221