Invariants of the equations of wave mechanics: Rigid rotator and symmetric top
Applying the systematic method discussed in previous papers, we derive the invariants and the groups of the time‐dependent Schrödinger equations for the rigid rotator and the symmetric top. The groups for these systems are found to be SO(3,2) (rigid rotator) and SU(2,2) (symmetric top). For the case...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1973-11, Vol.14 (11), p.1527-1531 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Applying the systematic method discussed in previous papers, we derive the invariants and the groups of the time‐dependent Schrödinger equations for the rigid rotator and the symmetric top. The groups for these systems are found to be SO(3,2) (rigid rotator) and SU(2,2) (symmetric top). For the case of the symmetric top, it is found that under the symmetry breaking I
1 = I
2 = I
3 → I
1 = I
2 ≠ I
3, where I
1, I
2, and I
3 are the moments of inertia of the top, two of the time‐independent constants of the motion become time‐dependent constants of the motion. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.1666221 |