Statistical Average of a Product of Phase Sums Arising in the Study of Disordered Lattice. II

This recurrence formula, derived in a previous paper [J. Math. Phys. 10, 2263 (1969)] to evaluate 〈S(k 1)S(k 2) ⋯ S(kn )〉,is extended here, for the case when k 1 + k 2 + ⋯ + kn = 0 but no other partial sum of the set k 1, k 2, ⋯, kn is zero. The average is of O(N) as compared to the O(1) when k 1 +...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1970-04, Vol.11 (4), p.1279-1282, Article 1279
1. Verfasser: Sah, Priyamvada
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This recurrence formula, derived in a previous paper [J. Math. Phys. 10, 2263 (1969)] to evaluate 〈S(k 1)S(k 2) ⋯ S(kn )〉,is extended here, for the case when k 1 + k 2 + ⋯ + kn = 0 but no other partial sum of the set k 1, k 2, ⋯, kn is zero. The average is of O(N) as compared to the O(1) when k 1 + k 2 + ⋯ + kn ≠ 0. Formulas are then proposed for the situations when more than one partial sum of the set vanish. 〈S(k)S(−k)〉 is considered for a parabolic probability distribution s(r) with a cutoff which shows striking similarity with x‐ray diffraction pattern of liquids.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.1665256