Geometrical phases for the G(4,2) Grassmannian manifold

We generalize the usual Abelian Berry phase generated for example in a system with two nondegenerate states to the case of a system with two doubly degenerate energy eigenspaces. The parametric manifold describing the space of states of the first case is formally given by the G(2,1) Grassmannian man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2003-06, Vol.44 (6), p.2463-2470
Hauptverfasser: Karle, Regina, Pachos, Jiannis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the usual Abelian Berry phase generated for example in a system with two nondegenerate states to the case of a system with two doubly degenerate energy eigenspaces. The parametric manifold describing the space of states of the first case is formally given by the G(2,1) Grassmannian manifold, while for the generalized system it is given by the G(4,2) one. For the latter manifold which exhibits a much richer structure than its Abelian counterpart we calculate the connection components, the field strength and the associated geometrical phases that evolve nontrivially both of the degenerate eigenspaces. A simple atomic model is proposed for their physical implementation.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.1572551