Hamiltonian Feynman path integrals via the Chernoff formula

The main aim of the present paper is using a Chernoff theorem (i.e., the Chernoff formula) to formulate and to prove some rigorous results on representations for solutions of Schrödinger equations by the Hamiltonian Feynman path integrals (= Feynman integrals over trajectories in the phase space). T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2002-10, Vol.43 (10), p.5161-5171
Hauptverfasser: Smolyanov, O. G., Tokarev, A. G., Truman, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main aim of the present paper is using a Chernoff theorem (i.e., the Chernoff formula) to formulate and to prove some rigorous results on representations for solutions of Schrödinger equations by the Hamiltonian Feynman path integrals (= Feynman integrals over trajectories in the phase space). The corresponding theorem is related to the original (Feynman) approach to Feynman path integrals over trajectories in the phase space in much the same way as the famous theorem of Nelson is related to the Feynman approach to the Feynman path integral over trajectories in the configuration space. We also give a representation for solutions of some Schrödinger equations by a series which represents an integral with respect to the complex Poisson measure on trajectories in the phase space.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.1500422