Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations
We stabilized a frequency-doubled Nd:YAG laser (λ=532 nm) with reference to an iodine absorption line, and applied it to a long-baseline interferometer for earth strain observations. To obtain unmodulated light, saturated absorption signals of an external iodine cell were detected by the modulation...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2002-06, Vol.73 (6), p.2434-2439 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We stabilized a frequency-doubled Nd:YAG laser (λ=532 nm) with reference to an iodine absorption line, and applied it to a long-baseline interferometer for earth strain observations. To obtain unmodulated light, saturated absorption signals of an external iodine cell were detected by the modulation transfer technique using an acousto-optic modulator working as both amplitude and frequency modulators. Two feedback loops, which could control the laser frequency by a piezo-electric actuator and a thermal actuator, realized fast and wide-range frequency stabilization, and ensured long-term stable operation. From a beat-note measurement between two identical systems, we obtained a frequency stability (in Allan variance) of
≲2×10
−13
for time intervals of 10 to 1000 s. By applying the stabilized Nd:YAG laser to a light source of a 10 m interferometer, we successfully observed earth tides and earthquakes in strain variations. Other geophysical signals, detectable by this strainmeter, are also discussed. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.1477606 |