Design of a miniature picosecond low-energy electron gun for time-resolved scattering experiments
We present the design and performance tests of a miniaturized pulsed low-energy electron gun. Electrons photoemitted from a gold cathode are accelerated over a distance of 75 μm and then collimated by a microchannel plate. According to calculations, this novel concept will allow the time spread of t...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2001-12, Vol.72 (12), p.4404-4407 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the design and performance tests of a miniaturized pulsed low-energy electron gun. Electrons photoemitted from a gold cathode are accelerated over a distance of 75 μm and then collimated by a microchannel plate. According to calculations, this novel concept will allow the time spread of the electron pulses to be kept below 5 ps for kinetic energies as low as 100 eV. The achievement of a minimum angular beam divergence (≈1°) along with an energy resolution of 1.1 eV has to be paid for by low signal intensities. We demonstrate the performance of the gun and the high electron-beam coherence by presenting low-energy-electron diffraction images taken from a submonolayer of lead adsorbed on the germanium (111) surface. We anticipate that this electron gun will open up new possibilities for following structural changes on solid surfaces in real time. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.1419219 |