The role of secondary instabilities in the stabilization of a nonpremixed lifted jet flame
A nonpremixed lifted jet flame is studied dynamically in the hysteresis zone. High-speed laser tomography images show clearly that, in the case of an organized jet, the flame is located on streamwise counter-rotating vortex filaments generated to secondary instabilities and ejected towards ambient a...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2001-09, Vol.13 (9), p.2662-2670 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nonpremixed lifted jet flame is studied dynamically in the hysteresis zone. High-speed laser tomography images show clearly that, in the case of an organized jet, the flame is located on streamwise counter-rotating vortex filaments generated to secondary instabilities and ejected towards ambient air. Particle image velocimetry is used to evaluate the amplitude of the translational and rotational velocity of these filaments. The use of an acoustic field to force jet instabilities shows that the flame, following large filament ejections, moves back upstream very close to the nozzle without anchoring at it. The role of streamwise vortices in the stabilization mechanism of the lifted flame is confirmed by measurements obtained with a disordered jet, from a straight tube burner. From these results, it is proposed that secondary vortices at the flame base are sufficiently strong to create a premixed zone and to oppose flame propagation. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.1386935 |