Core performance and mix in direct-drive spherical implosions with high uniformity
The performance of gas-filled, plastic-shell implosions has significantly improved with advances in on-target uniformity on the 60-beam OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. Polarization smoothing (PS) with birefringent wedges and 1-THz-b...
Gespeichert in:
Veröffentlicht in: | Physics of Plasmas 2001-05, Vol.8 (5), p.2251-2256 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of gas-filled, plastic-shell implosions has significantly improved with advances in on-target uniformity on the 60-beam OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. Polarization smoothing (PS) with birefringent wedges and 1-THz-bandwidth smoothing by spectral dispersion (SSD) have been installed on OMEGA. The beam-to-beam power imbalance is
⩽5%
rms. Implosions of 20-μm-thick CH shells (15 atm fill) using full beam smoothing (1-THz SSD and PS) have primary neutron yields and fuel areal densities that are
∼70%
larger than those driven with 0.35-THz SSD without PS. They also produce
∼35%
of the predicted one-dimensional neutron yield. The results described here suggest that individual-beam nonuniformity is no longer the primary cause of nonideal target performance. A highly constrained model of the core conditions and fuel–shell mix has been developed. It suggests that there is a “clean” fuel region, surrounded by a mixed region, that accounts for half of the fuel areal density. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.1350964 |