Timely detection of dynamical change in scalp EEG signals

We present a robust, model-independent technique for quantifying changes in the dynamics underlying nonlinear time-serial data. After constructing discrete density distributions of phase-space points on the attractor for time-windowed data sets, we measure the dissimilarity between density distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2000-12, Vol.10 (4), p.864-875
Hauptverfasser: Hively, L. M., Protopopescu, V. A., Gailey, P. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a robust, model-independent technique for quantifying changes in the dynamics underlying nonlinear time-serial data. After constructing discrete density distributions of phase-space points on the attractor for time-windowed data sets, we measure the dissimilarity between density distributions via L 1 - distance and χ 2 statistics. The discriminating power of the new measures is first tested on data generated by the Bondarenko “synthetic brain” model. We also compare traditional nonlinear measures and the new dissimilarity measures to detect dynamical change in scalp EEG data. The results demonstrate a clear superiority of the new measures in comparison to traditional nonlinear measures as robust and timely discriminators of changing dynamics.
ISSN:1054-1500
1089-7682
DOI:10.1063/1.1312369