Local poloidal and toroidal plasma rotation velocities and ion temperature in a tokamak plasma obtained with a matrix inversion method considering asymmetries

An inversion technique is presented for the local poloidal and toroidal rotation velocities and for the ion temperature from line integrated measurements performed on Tokamak de Varennes (TdeV) [R. Decoste and TdeV Team, Proceedings of the 15th International Conference on Plasma Physics and Controll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2000-09, Vol.7 (9), p.3641-3653
Hauptverfasser: Condrea, I., Haddad, E., Gregory, B. C., Abel, G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An inversion technique is presented for the local poloidal and toroidal rotation velocities and for the ion temperature from line integrated measurements performed on Tokamak de Varennes (TdeV) [R. Decoste and TdeV Team, Proceedings of the 15th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville, 1994 (International Atomic Energy Agency, Vienna, 1995) IAEA-CN-60/A4-11]. The velocity is obtained using two matrix inversions; the first for the emissivity and the second with the velocity weighted emissivity. The temperature is obtained with three matrix inversions: emissivity, temperature weighted emissivity and rotation velocity squared. The effect of the rotation velocity represents up to 16% in the ion temperature for TdeV plasmas. The local values obtained using the lengths matrix with the magnetic flux lines from the equilibrium code are compared with those obtained by a standard Abel inversion with circular flux lines. Differences up to 20% are observed between the emissivities deduced with circular and real flux lines, whereas the rotation velocity and the ion temperature are very similar. The technique was applied for the poloidal and toroidal geometry to determine the poloidal and toroidal velocities and the emission asymmetries. Top poloidal and toroidal emissivities present strong asymmetries due to the divertor plates and the X point whereas bottom poloidal and toroidal emissivities show an inner–outer symmetry, making the inversion more reliable in this region. A first approach to model the strong asymmetry was made assuming that the emissivity has both a radial and a poloidal dependence. The best result was obtained using a radial dependence and a peaked function of the poloidal angle for the poloidal asymmetric part of the emissivity. Both emissivity and velocity asymmetries are present in the upper part of the plasma implying that the X point behaves as a source. Examples of emissivities, rotation velocities and ion temperatures observed in TdeV plasmas in H and L (high and low confinement) modes with different bottom plasma triangularity are shown.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.1287417