Composite films of graphene oxide with semiconducting carbon nanotubes: Raman spectroscopy characterization
Noncovalent interaction between semiconducting single-walled carbon nanotubes (SWNTs) and graphene oxide (GO) in composite films (GO-SWNTs) was analyzed by Raman spectroscopy in the range of D and G modes (1170–1780 cm−1). Comparison between Raman spectra of composite film and single-component GO an...
Gespeichert in:
Veröffentlicht in: | Low temperature physics (Woodbury, N.Y.) N.Y.), 2021-03, Vol.47 (3), p.206-213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Noncovalent interaction between semiconducting single-walled carbon nanotubes (SWNTs) and graphene oxide (GO) in composite films (GO-SWNTs) was analyzed by Raman spectroscopy in the range of D and G modes (1170–1780 cm−1). Comparison between Raman spectra of composite film and single-component GO and SWNTs films showed that the interaction between GO and SWNTs is accompanied by a band broadening and spectral shifting. Observed spectral transformations are attributed to charge transfer between GO and SWNTs as well as a deformation of carbon surfaces which occurs in the composite. Spectral measurements of composite GO-SWNTs film with biological globular molecules (the enzyme glucoseoxidase) showed that these molecules weaken mechanical stress of GO on the nanotubes. |
---|---|
ISSN: | 1063-777X 1090-6517 |
DOI: | 10.1063/10.0003520 |