The temporal stability of recurrence quantification analysis attributes from chronic atrial fibrillation electrograms
Abstract Introduction The temporal behavior of atrial electrograms (AEGs) collected during persistent atrial fibrillation (persAF) directly affects ablative treatment outcomes. We investigated different durations of AEGs collected during persAF using recurrence quantification analysis (RQA). Methods...
Gespeichert in:
Veröffentlicht in: | Research on biomedical engineering 2018-10, Vol.34 (4), p.337-349 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Introduction The temporal behavior of atrial electrograms (AEGs) collected during persistent atrial fibrillation (persAF) directly affects ablative treatment outcomes. We investigated different durations of AEGs collected during persAF using recurrence quantification analysis (RQA). Methods 797 bipolar AEGs with different durations (from 0.5 s to 8 s) from 18 patients were investigated. Four RQA-based attributes were evaluated based on AEG durations: determinism (DET); recurrence rate (RR); laminarity (LAM); and diagonal lines’ entropy (ENTR). The Spearman correlation (ρ) between each duration versus 8 s was calculated. AEG classification was performed following the CARTO criteria (Biosense Webster) and receiving operating characteristic (ROC) curves were created for the RQA variables. Results The RQA variables successfully discriminated the AEGs: the area under the ROC curves were as high as 0.70 for AEGs with 3.5 s or greater. Three types of AEGs were found using these variables: normal, fractionated and temporally unstable. The number of unstable AEGs decreased with longer AEG segments. Different AEG durations significantly affected the RQA variables (P |
---|---|
ISSN: | 2446-4732 2446-4740 2446-4740 |
DOI: | 10.1590/2446-4740.180040 |