Information retrieval: Solving mismatching vocabulary in closed document collections
During a search, phrase-terms expressed in queries are presented to an information retrieval system (IRS) to find documents relevant to a topic. The IRS makes relevance judgements by attempting to match vocabulary in queries to documents. If there is a mismatch, the problem of vocabulary mismatch oc...
Gespeichert in:
Veröffentlicht in: | South African journal of library and information science 2021-01, Vol.87 (2), p.42-54 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During a search, phrase-terms expressed in queries are presented to an information retrieval system (IRS) to find documents relevant to a topic. The IRS makes relevance judgements by attempting to match vocabulary in queries to documents. If there is a mismatch, the problem of vocabulary mismatch occurs. The aim is to examine ways of searching for documents more effectively, in order to minimise mismatches. A further aim is to understand the mechanisms of, and the differences between, human and machine-assisted, retrieval. The objective of this study was to determine whether IRS-H (an IRS using the hybrid indexing method) and human participants agree or disagree on relevancy judgments, and whether the problem of mismatching vocabulary can be solved. A collection of eighty research documents and sixty-five phrase-terms were presented to (i) IRS-H and four participants in Test 1, and (ii) IRS-H and one participant (aided by search software) in Test 2. Statistical analysis was performed using the Kappa coefficient. IRS-H and the four participants’ judgements disagreed. IRS-H and the participant aided by search software judgments did agree. IRS-H solves the problem of mismatching vocabulary between a query and a document. |
---|---|
ISSN: | 0256-8861 2304-8263 2304-8263 |
DOI: | 10.7553/10.7553/87-2-1957 |