On the divergence of line search methods

We discuss the convergence of line search methods for minimization. We explain how Newton's method and the BFGS method can fail even if the restrictions of the objective function to the search lines are strictly convex functions, the level sets of the objective functions are compact, the line s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2007, Vol.26 (1), p.129-169
1. Verfasser: Mascarenhas, Walter F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss the convergence of line search methods for minimization. We explain how Newton's method and the BFGS method can fail even if the restrictions of the objective function to the search lines are strictly convex functions, the level sets of the objective functions are compact, the line searches are exact and the Wolfe conditions are satisfied. This explanation illustrates a new way to combine general mathematical concepts and symbolic computation to analyze the convergence of line search methods. It also illustrate the limitations of the asymptotic analysis of the iterates of nonlinear programming algorithms.
ISSN:1807-0302
1807-0302
DOI:10.1590/S1807-03022007000100006