Vibration Analysis of Axially Functionally Graded Timoshenko Beams with Non-uniform Cross-section

The present paper investigates the transverse vibration of a non-uniform axially functionally graded Timoshenko beam with cross-sectional and material properties varying in the beam length direction. The Chebyshev collocation method is used to spatially discretize the governing partial differential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Latin American journal of solids and structures 2021-01, Vol.18 (7), Article 397
1. Verfasser: Chen, Wei-Ren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present paper investigates the transverse vibration of a non-uniform axially functionally graded Timoshenko beam with cross-sectional and material properties varying in the beam length direction. The Chebyshev collocation method is used to spatially discretize the governing partial differential equations of motion of the beam into time-dependent ordinary differential equations in terms of Chebyshev differentiation matrices. An algebraic eigenvalue equation in matrix form is then formed to study the free vibration behavior of non-uniform axially functionally graded Timoshenko beams. Several results of natural frequencies of the beams are evaluated and compared with those in the published literature to assure the accuracy of the proposed model. The effects of taper ratio, material graded index, slenderness ratio, material compositions and restraint types on the natural frequencies of tapered axially functionally graded Timoshenko beams are examined.
ISSN:1679-7825
1679-7817
1679-7825
DOI:10.1590/1679-78256434