Sensitivity of modal parameters of multi-span bridges to SSI and pier column inelasticity and its implications for FEM model updating
Abstract Modal parameters, determined through forced vibration testing, ambient vibrations or seismic excitations, are central to the structural health monitoring process for bridges. These parameters are used to obtain high-fidelity numerical models through FEM model updating by fine-tuning mass, s...
Gespeichert in:
Veröffentlicht in: | Latin American journal of solids and structures 2020-01, Vol.17 (2) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Modal parameters, determined through forced vibration testing, ambient vibrations or seismic excitations, are central to the structural health monitoring process for bridges. These parameters are used to obtain high-fidelity numerical models through FEM model updating by fine-tuning mass, stiffness and boundary conditions and matching the numerical and observed modal parameters. This study investigated sensitivity of modal parameters to changes in boundary conditions (soil-structure interaction effect) and pier column inelasticity (stiffness effect) through more than 450 non-linear dynamic time-history analysis of an ordinary multi-span bridge. The bridge system was founded on shallow foundations in five rock profiles and on pile foundations in five soil profiles and was subjected to 21 seismic ground motions of varying intensity (0.036 to 0.61g). Modal frequencies showed sensitivity to the SSI and pier column inelasticity effects for low and higher levels of seismic excitations respectively. Mode shapes, on the contrary, were insensitive to SSI as well as pier column inelasticity for all levels of seismic excitations. |
---|---|
ISSN: | 1679-7817 1679-7825 1679-7825 |
DOI: | 10.1590/1679-78255895 |