Large deflection and initial instability analysis of anisotropic plates by the generalized finite element method

Abstract This paper presents investigations laminated plates under moderately large transverse displacements and initial instability, through the Generalized Finite Element Methods - GFEM. The von Kármán plate hypothesis are used along with Kirchhoff and Reissner-Mindlin kinematic plate bending mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Latin American journal of solids and structures 2019, Vol.16 (8)
Hauptverfasser: Mendonça, Paulo de Tarso Rocha de, Ribeiro, Marx, Barcellos, Clovis Sperb de
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This paper presents investigations laminated plates under moderately large transverse displacements and initial instability, through the Generalized Finite Element Methods - GFEM. The von Kármán plate hypothesis are used along with Kirchhoff and Reissner-Mindlin kinematic plate bending models to approximate transverse displacements and critical buckling loads. The generalized approximation functions are either C 0or C k continuous functions, with k being arbitrarily large. It is well known that in GFEM, when both the partition of unity (PoU) and the enrichments functions are polynomials, the stiffness matrices are singular or ill conditioned, which causes additional difficulties in applications that requires the solution of algebraic eigenvalues problems, like in the determination of natural frequencies of vibration or the initial buckling loads. Some investigations regarding this problem are presently addressed and some aspects and advantages of using C k -GFEM are observed. In addition, comparisons are presented between the classical GFEM and the Stable-GFEM (SGFEM) with regard to the evaluation of the initial critical buckling loads. The numerical experiments use reference values from analytical and numerical results obtained in the open literature.
ISSN:1679-7817
1679-7825
1679-7825
DOI:10.1590/1679-78255394