Characterization and synthesis of a 32-bit asynchronous microprocessor in synchronous reconfigurable devices
This paper presents the design, implementation, and experimental results of 32-bit asynchronous microprocessor developed in a synchronous reconfigurable device (FPGA), taking advantage of a hard macro. It has support for floating point operations, such as addition, subtraction, and multiplication, a...
Gespeichert in:
Veröffentlicht in: | Journal of applied research and technology 2015-10, Vol.13 (5), p.483-497 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the design, implementation, and experimental results of 32-bit asynchronous microprocessor developed in a synchronous reconfigurable device (FPGA), taking advantage of a hard macro. It has support for floating point operations, such as addition, subtraction, and multiplication, and is based on the IEEE 754-2008 standard with 32-bit simple precision. This work describes the different blocks of the microprocessors as delay modules, needed to implement a Self-Timed (ST) protocol in a synchronous system, and the operational analysis of the asynchronous central unit, according to the developed occupations and speeds. The ST control is based on a micropipeline used as a centralized generator of activation signals that permit the performance of the operations in the microprocessor without the need of a global clock. This work compares the asynchronous microprocessor with a synchronous version. The parameters evaluated are power consumption, area, and speed. Both circuits were designed and implemented in an FPGA Virtex 5. The performance obtained was 4 MIPS for the asynchronous microprocessor against 1.6 MIPS for the synchronous. |
---|---|
ISSN: | 1665-6423 2448-6736 |
DOI: | 10.1016/j.jart.2015.10.004 |