Evidence of lead ions on palygorskite surface after adsorptive process: kinetic and isotherms studies

ABSTRACT Our previous work reported that palygorskite has potential for application as metal cations adsorbent due to its chemical and mineralogical properties. In this work, kinetic study and adsorption isotherms were performed in order to evaluate Pb (II) ions adsorption rate, maximum capacity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Matéria 2022, Vol.27 (2)
Hauptverfasser: Simões, Karla Mayara Arguelles, Novo, Bruna de Lemos, Marçano, Giullia Bertrand, Silva, Fernanda Arruda Nogueira Gomes da, Teixeira, Viviane Gomes, Afonso, Julio Carlos, Bertolino, Luiz Carlos, Yokoyama, Lidia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Our previous work reported that palygorskite has potential for application as metal cations adsorbent due to its chemical and mineralogical properties. In this work, kinetic study and adsorption isotherms were performed in order to evaluate Pb (II) ions adsorption rate, maximum capacity and type of adsorption by using palygorskite as adsorbent. Adsorption tests were performed in batch, using pH of 5, 2 g of palygorskite, 40 mL of synthetic effluent solution and stirring for 1 hour. Kinetic experiments were performed using 34 mg L-1 of a lead synthetic effluent at same mass and pH conditions. Furthermore, after adsorption studies, the sample was characterized by X-ray fluorecence (XRF), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) coupled with Energy-dispersive X-ray spectroscopy (EDS) analysis, in order to verify and understand the interaction of lead ions in palygorskite. The results demonstrated that palygorskite presented an equilibrium time of 10 min with 99.14% of removal, following pseudo-second order kinetic. The maximum adsorption capacity was 21.65 mg g-1 and Gibbs’ adsorption-free energy was -21.39 KJ mol-1, with Langmuir model being the most suitable for adjustment of the data. Thus, its presence was confirmed by characterization techniques, indicating that the metal is distributed homogeneously on palygorskite surface, proving its efficiency as lead ions adsorbent.
ISSN:1517-7076
1517-7076
DOI:10.1590/s1517-707620220002.1324