A chemical patterning approach of dense and porous titanium surfaces by using a combination of concentrated acid and oxidant

ABSTRACT Commercially dense pure titanium sheets and porous titanium samples processed by powder metallurgy were treated with a mixture consisting of equal volumes of H2SO4 and H2O2 for 2 or 4 hours. Characterization was performed by scanning electron microscopy, energy dispersive X-ray spectroscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Matéria 2021, Vol.26 (2)
Hauptverfasser: Ribeiro, Alexandre Antunes, Silva, Rodrigo Sacramento da, Way, Débora Vieira, Alves, Lais de Souza, Silveira, Erika Batista, Mendes, Fabiana Magalhães Teixeira, Oliveira, Marize Varella de
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Commercially dense pure titanium sheets and porous titanium samples processed by powder metallurgy were treated with a mixture consisting of equal volumes of H2SO4 and H2O2 for 2 or 4 hours. Characterization was performed by scanning electron microscopy, energy dispersive X-ray spectroscopy, confocal scanning optical microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The analyses showed that the chemical patterning approach using a combination of concentrated acid and oxidant was able to generate a nanotexture on dense and porous titanium surfaces. In addition, the treated samples presented an oxide layer consisting predominantly of titanium dioxide with negative charge conferred by the presence of hydroxyl groups, which is an important factor that favors apatite nucleation and protein adsorption. It was also observed that oxide formation was more effective on porous samples than on dense samples, which can be explained by the higher surface area intrinsic to porous media. Finally, the findings indicated that both treatment times promoted similar modifications in surface properties, such as nanotexture and chemical composition, suggesting that the time of 2 hours were enough to induce the surface alterations at the nanoscale.
ISSN:1517-7076
1517-7076
DOI:10.1590/s1517-707620210002.1284