Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces
Abstract In this paper, we investigate the mean curvature flows starting from all leaves of theisoparametric foliation given by a certain kind of solvable group action on a symmetric space of non-compact type. We prove that the mean curvature flow starting from each non-minimal leaf of the foliation...
Gespeichert in:
Veröffentlicht in: | Cubo (Temuco, Chile) Chile), 2018-10, Vol.20 (3), p.13-29 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract In this paper, we investigate the mean curvature flows starting from all leaves of theisoparametric foliation given by a certain kind of solvable group action on a symmetric space of non-compact type. We prove that the mean curvature flow starting from each non-minimal leaf of the foliation exists in infinite time, if the foliation admits no minimal leaf, then the flow asymptotes the self-similar flow starting from another leaf, and if the foliation admits a minimal leaf (in this case, it is shown that there exists the only one minimal leaf), then the flow converges to the minimal leaf of the foliation in C∞-topology. These results give the geometric information between the leaves. |
---|---|
ISSN: | 0719-0646 0719-0646 |
DOI: | 10.4067/S0719-06462018000300013 |