The Effects of L-Carnitine on Gastrointestinal Contractility and Histological Changes in Rat Intestinal Ischemia-Reperfusion Injury

Ischemia-reperfusion (I/R) of the small intestine causes serious abdominal pathologies including tissue dysfunction and organ failure. L-carnitine (L-C), a powerful antioxidant, may help lessen the severity of these pathological effects since it plays a key role in energy metabolism. In this work we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of morphology 2022, Vol.40 (5), p.1294-1299
Hauptverfasser: Özant, Ali, Farisoglu, Ülfet, Toros, Pelin, Koç, Emine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ischemia-reperfusion (I/R) of the small intestine causes serious abdominal pathologies including tissue dysfunction and organ failure. L-carnitine (L-C), a powerful antioxidant, may help lessen the severity of these pathological effects since it plays a key role in energy metabolism. In this work we aimed to study the effects of L-C on the isolated ileal and duodenal contractility and histological changes in intestinal ischemia and reperfusion injury. Twenty eight Wistar rats were divided into four groups. The first group is the control group. Second group, I/R group, had rats submitted to 45-minutes of intestinal ischemia and to 45-minutes reperfusion. The third group, I/R+ L-C group, rats were treated with L-C 5 minutes before reperfusion and than submitted to ischemia. The fourth group, included rats that were treated with L-C without ischemia or reperfusion. Intestinal ischemia was conducted by obstructing superior mesentery arteries by silk loop. The ileal and duodenal segments were isolated and suspended in tissue bath. Contractile responses were induced by acetylcholine (Ach) and relaxation was achieved with phenylephrine. At the same time the terminal ileal and duodenal segments were examined for histological changes. Ach-induced contraction responses were higher in the I/R+L-C group, the L-C group, and the control group compared to the I/R group, in both ileal and duodenal segments. On the other hand, the phenylephrine-induced relaxations were higher in the I/R+L-C and L-C groups, especially in duodenal segments. In I/R group intestinal morphology was observed to be severely damaged whereas in I/R+L-C group the damage was noticeably lower possibly due to protective properties of L-C. I/R injury caused severe cellular damage response within the muscularis resulting in decreased gastrointestinal motility. Treatment with the L-C has significantly affected the gastrointestinal contractility. Also L-C treatment reduced the damage in intestinal morphology that occurs after IR injury.
ISSN:0717-9502
0717-9502
DOI:10.4067/S0717-95022022000501294