Vitamin E Suppresses Aortic Ultrastructural Alterations Induced by Toxic Doses of Monosodium Glutamate

An association between certain food additives and chronic diseases is reported. Current study determined whether administering toxic doses of the food additive monosodium glutamate (MSG) into rats can induce aortopathy in association with the oxidative stress and inflammatory biomarkers upregulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of morphology 2022-06, Vol.40 (3), p.697-705
Hauptverfasser: Ellatif, Mohamed Abd, Dallak, Mohammad, Dawood, Amal F, Eid, Refaat A, Bayoumy, Nervana M, Ebrahim, Hasnaa A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An association between certain food additives and chronic diseases is reported. Current study determined whether administering toxic doses of the food additive monosodium glutamate (MSG) into rats can induce aortopathy in association with the oxidative stress and inflammatory biomarkers upregulation and whether the effects of MSG overdose can be inhibited by vitamin E. MSG at a dose of (4 mg/kg; orally) that exceeds the average human daily consumption by 1000x was administered daily for 7 days to the rats in the model group. Whereas, rats treated with vitamin E were divided into two groups and given daily doses of MSG plus 100 mg/ kg vitamin E or MSG plus 300 mg/kg vitamin E. On the eighth day, all rats were culled. Using light and electron microscopy examinations, a profound aortic injury in the model group was observed demonstrated by damaged endothelial layer, degenerated smooth muscle cells (SMC) with vacuoles and condensed nuclei, vacuolated cytoplasm, disrupted plasma membrane, interrupted internal elastic lamina, clumped chromatin, and damaged actin and myosin filaments. Vitamin E significantly protected aorta tissue and cells as well as inhibited MSG-induced tissue malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). The highest used vitamin E dosage was more effective. Additionally, a significant correlation was observed between the aortic injury degree and tissue MDA, TNF-α, IL-6, and superoxide dismutase (SOD) levels (p=0.001). Vitamin E effectively protects against aortopathy induced by toxic doses of MSG in rats and inhibits oxidative stress and inflammation.
ISSN:0717-9502
0717-9502
DOI:10.4067/S0717-95022022000300697