Development and evaluation of a bulk three-moment parameterization scheme incorporating the processes of sedimentation and collision-coalescence
There are a few three-moment schemes that consider other processes besides sedimentation. Thus, a performance assessment of these types of schemes due to the combined effect of sedimentation and other microphysical processes is a matter of interest. In this study, a warm rain bulk three-moment param...
Gespeichert in:
Veröffentlicht in: | Atmósfera 2024-01, Vol.38, p.1-21 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are a few three-moment schemes that consider other processes besides sedimentation. Thus, a performance assessment of these types of schemes due to the combined effect of sedimentation and other microphysical processes is a matter of interest. In this study, a warm rain bulk three-moment parameterized scheme was developed and evaluated through a detailed comparison with a bin microphysical scheme. To evaluate the impact of sedimentation and the combined effect of sedimentation and collision-coalescence on the droplet size distribution (DSD), a rain shaft model was applied to the DSD with different initial values of the shape parameter. For pure sedimentation, a good correspondence was obtained between the three-moment scheme and the explicit model, with a practically perfect coincidence of bulk quantities for larger values of the gamma distribution’s initial shape parameter and, in general, the three-moment parameterization scheme performing much better than the two-moment scheme. The simulations performed for this case confirm (as reported in previous studies) that for pure sedimentation, the three-moment parameterization schemes deliver a physically more complete representation of the evolution of droplet size distribution. The impact of the combined effect of sedimentation and collision-coalescence processes on DSD was also assessed. We could observe that certain differences arise between the parameterized scheme and the spectral model when the collision-coalescence process is incorporated, as the onset of precipitation occurs earlier in the three-moment parameterized scheme. It can be concluded that, in general, the three-moment warm rain bulk microphysics scheme is able to reproduce the results of the reference bin microphysical model. |
---|---|
ISSN: | 0187-6236 2395-8812 |
DOI: | 10.20937/ATM.53181 |