NEGATIVE EFFECTS ON PHOTOSYNTHESIS AND CHLOROPLAST PIGMENTS EXPOSED TO LEAD AND ALUMINUM: A META-ANALYSIS

ABSTRACT Toxic metals have become some of the main abiotic agents that influence the stress of organisms due to their numerous agricultural and industrial uses that result in bioaccumulation and toxicity at different levels, depending on the type and concentration in the environment. Aluminum and le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CERNE 2020-06, Vol.26 (2), p.232-237
Hauptverfasser: Cunha Neto, Antonio Rodrigues da, Ambrósio, Alexandra dos Santos, Wolowski, Marina, Westin, Tainara Bettiol, Govêa, Kamilla Pacheco, Carvalho, Marilia, Barbosa, Sandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Toxic metals have become some of the main abiotic agents that influence the stress of organisms due to their numerous agricultural and industrial uses that result in bioaccumulation and toxicity at different levels, depending on the type and concentration in the environment. Aluminum and lead are present as a result of anthropogenic activities and cause soil contamination and, consequently, pollution effects on producers such as plants. In this review, we used meta-analysis techniques to assess the effect of aluminum and lead on plant physiology. We calculated the overall effect size for the response variables photosynthesis, maximum quantum efficiency of photosystem II and plastid pigments (chlorophyll a, chlorophyll b and carotenoids). Moreover, it was possible to test the the effect of each metal and the phylogenetic relationship for the probability of Fabaceae species to respond to the pollution caused by these heavy metals, due to the number of studies found using this family. Overall, exposure to the toxic metals at high magnitudes affects photosynthesis and chlorophyll b (by reducing its amount). When considering the effect of each metal separately, aluminum reduced the content of the chlorophyll a and chlorophyll b. However, lead reduced photosynthesis, maximum quantum efficiency of photosystem II and chlorophyll b. When considering the Fabaceae species, there was no reduction of the parameters analyzed under stress by toxic metals. Therefore, our results confirm that these toxic metals (aluminum and lead) are toxic to plant physiology, mainly affecting the efficiency of the photosynthetic system and the plastid content.
ISSN:0104-7760
2317-6342
2317-6342
DOI:10.1590/01047760202026022711