NUMERICAL SIMULATION OF COAL GASIFICATION IN A CIRCULATING FLUIDIZED BED GASIFIER
Abstract This paper presents a 3D full-loop simulation of a circulating fluidized bed gasifier. The model is validated with experimental results from the literature. The validated model is thereupon used to compare Bubbling Fluidized Bed (BFB) and Circulating Fluidized Bed (CFB) gasifiers to highlig...
Gespeichert in:
Veröffentlicht in: | Brazilian journal of chemical engineering 2019-07, Vol.36 (3), p.1289-1301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract This paper presents a 3D full-loop simulation of a circulating fluidized bed gasifier. The model is validated with experimental results from the literature. The validated model is thereupon used to compare Bubbling Fluidized Bed (BFB) and Circulating Fluidized Bed (CFB) gasifiers to highlight the effect of a change in fluidization regime from bubbling to fast fluidization on hydrodynamics, temperature and gas composition. Feed temperature as well as Air/Coal (A/C) and Steam/Coal (S/C) ratios are kept constant, whereas the velocity of the feed (Air-Steam) is increased so as to get into the fast fluidization regime. It was concluded that the flue gas from the CFB is richer in desired gases, i.e., CO and H2 than that from BFB. H2 remains approximately the same, CO2 and CH4 decreased to a negligible amount and CO approximately doubles when the regime is changed. In addition, tar content in the gas also decreases. |
---|---|
ISSN: | 0104-6632 1678-4383 1678-4383 |
DOI: | 10.1590/0104-6632.20190363s20180423 |