REDUCTION OF EXCESS SLUDGE PRODUCTION IN AN ACTIVATED SLUDGE SYSTEM BASED ON LYSIS-CRYPTIC GROWTH, UNCOUPLING METABOLISM AND FOLIC ACID ADDITION
Abstract The following sludge reduction alternatives were tested in wastewater biological reactors: oxic-settling-anaerobic (OSA-process); ultrasonic disintegration (UD); chlorination (CH); 3,3',4',5-tetrachlorosalicylanilide (TCS); and folic acid (FA). Compared to the control system, UD r...
Gespeichert in:
Veröffentlicht in: | Brazilian journal of chemical engineering 2016-01, Vol.33 (1), p.47-57 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract The following sludge reduction alternatives were tested in wastewater biological reactors: oxic-settling-anaerobic (OSA-process); ultrasonic disintegration (UD); chlorination (CH); 3,3',4',5-tetrachlorosalicylanilide (TCS); and folic acid (FA). Compared to the control system, UD reduced 55% of the sludge production, and greater substrate and nutrient removal efficiency was achieved. CH worsened the sludge settleability and increased the SVI values; the system achieved 25% of sludge reduction. OSA showed 50% and 60% of sludge reduction after 16 and 10 hours under anaerobic conditions, respectively. The observed sludge yield during TCS addition was decreased by 40%, and the sludge settleability worsened. FA presented the highest sludge reduction (75%), and the system improved the nutrient removal efficiency by 30% compared to the control system and maintained the sludge properties. Acute toxicity conducted with Daphnia magna classified the effluent from the sludge reduction systems as non-toxic for discharge into water sources. |
---|---|
ISSN: | 0104-6632 1678-4383 0104-6632 |
DOI: | 10.1590/0104-6632.20160331s20140207 |