Determination of plasma temperature by a semi-empirical method

Doppler or Stark line broadening effects are generally used to determinate plasma temperature. These methods are difficult to apply to spectra of highly ionized atoms due to the short wavelengths involved. It is not at all easy to achieve sufficient wavelength resolution in this spectral range. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian journal of physics 2004-12, Vol.34 (4b), p.1673-1676
Hauptverfasser: Borges, F. O., Cavalcanti, G. H., Trigueiros, A. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1676
container_issue 4b
container_start_page 1673
container_title Brazilian journal of physics
container_volume 34
creator Borges, F. O.
Cavalcanti, G. H.
Trigueiros, A. G.
description Doppler or Stark line broadening effects are generally used to determinate plasma temperature. These methods are difficult to apply to spectra of highly ionized atoms due to the short wavelengths involved. It is not at all easy to achieve sufficient wavelength resolution in this spectral range. In this case, a spectroscopic technique based on the relative intensities of lines must be used to measure the electron temperature in a plasma. However the relation of the measure of relative line intensity and the plasma electron temperature is complex and a number of issues must be examined for the diagnostic. In simple cases, only a two levels system need be considered. Here we introduce a semi-empirical method to determine the plasma temperature that takes into account multiple levels structure. In the theoretical model we consider a local thermodynamic equilibrium(LTE). The greatest difficult in the determination of plasma temperature using a multiple levels approach is overcome by calculating the transition probabilities in terms of the oscillator strength parameters. To check the method we calculated the oscillator strengths for the Cu I using a multi-configurational Hartree-Fock relativistic (HFR) approach. The electrostatic parameters were optimized by a least-squares procedure, in order to obtain the best fitting to the experimental energy levels. This method produces gf- values that are in better agreement with their experimental values than the produced by the ab initio calculation. The temperature obtained was 5739.3 K, what is compatible with direct measurements made for cupper DC discharge.
doi_str_mv 10.1590/S0103-97332004000800030
format Article
fullrecord <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S0103_97332004000800030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0103_97332004000800030</scielo_id><sourcerecordid>S0103_97332004000800030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-1d299fb22f8394fcbfb99b85922fe28ed47c726564e54be9b777b2f9065934043</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRb0AiVL4BvwDKRM_4niDhMpTqsQCWEe2Mxaukriy3UX_nkARG8RiNNIdnZl7h5CrGla11HD9CjXwSivOGYAAgHYuDidk8Ts4I-c5bwGYBMEX5OYOC6YxTKaEONHo6W4weTS04LjDZMo-IbUHamjGMVSzGFJwZqAjlo_YX5BTb4aMlz99Sd4f7t_WT9Xm5fF5fbupHBeyVHXPtPaWMd9yLbyz3mptW6lnBVmLvVBOsUY2AqWwqK1SyjKvoZGai9nokqyOe7MLOMRuG_dpmg9234m7P4lnQB0Bl2LOCX23S2E06dDV0H396l_yEwASW2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determination of plasma temperature by a semi-empirical method</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Borges, F. O. ; Cavalcanti, G. H. ; Trigueiros, A. G.</creator><creatorcontrib>Borges, F. O. ; Cavalcanti, G. H. ; Trigueiros, A. G.</creatorcontrib><description>Doppler or Stark line broadening effects are generally used to determinate plasma temperature. These methods are difficult to apply to spectra of highly ionized atoms due to the short wavelengths involved. It is not at all easy to achieve sufficient wavelength resolution in this spectral range. In this case, a spectroscopic technique based on the relative intensities of lines must be used to measure the electron temperature in a plasma. However the relation of the measure of relative line intensity and the plasma electron temperature is complex and a number of issues must be examined for the diagnostic. In simple cases, only a two levels system need be considered. Here we introduce a semi-empirical method to determine the plasma temperature that takes into account multiple levels structure. In the theoretical model we consider a local thermodynamic equilibrium(LTE). The greatest difficult in the determination of plasma temperature using a multiple levels approach is overcome by calculating the transition probabilities in terms of the oscillator strength parameters. To check the method we calculated the oscillator strengths for the Cu I using a multi-configurational Hartree-Fock relativistic (HFR) approach. The electrostatic parameters were optimized by a least-squares procedure, in order to obtain the best fitting to the experimental energy levels. This method produces gf- values that are in better agreement with their experimental values than the produced by the ab initio calculation. The temperature obtained was 5739.3 K, what is compatible with direct measurements made for cupper DC discharge.</description><identifier>ISSN: 0103-9733</identifier><identifier>ISSN: 1678-4448</identifier><identifier>DOI: 10.1590/S0103-97332004000800030</identifier><language>eng</language><publisher>Sociedade Brasileira de Física</publisher><subject>PHYSICS, MULTIDISCIPLINARY</subject><ispartof>Brazilian journal of physics, 2004-12, Vol.34 (4b), p.1673-1676</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-1d299fb22f8394fcbfb99b85922fe28ed47c726564e54be9b777b2f9065934043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids></links><search><creatorcontrib>Borges, F. O.</creatorcontrib><creatorcontrib>Cavalcanti, G. H.</creatorcontrib><creatorcontrib>Trigueiros, A. G.</creatorcontrib><title>Determination of plasma temperature by a semi-empirical method</title><title>Brazilian journal of physics</title><addtitle>Braz. J. Phys</addtitle><description>Doppler or Stark line broadening effects are generally used to determinate plasma temperature. These methods are difficult to apply to spectra of highly ionized atoms due to the short wavelengths involved. It is not at all easy to achieve sufficient wavelength resolution in this spectral range. In this case, a spectroscopic technique based on the relative intensities of lines must be used to measure the electron temperature in a plasma. However the relation of the measure of relative line intensity and the plasma electron temperature is complex and a number of issues must be examined for the diagnostic. In simple cases, only a two levels system need be considered. Here we introduce a semi-empirical method to determine the plasma temperature that takes into account multiple levels structure. In the theoretical model we consider a local thermodynamic equilibrium(LTE). The greatest difficult in the determination of plasma temperature using a multiple levels approach is overcome by calculating the transition probabilities in terms of the oscillator strength parameters. To check the method we calculated the oscillator strengths for the Cu I using a multi-configurational Hartree-Fock relativistic (HFR) approach. The electrostatic parameters were optimized by a least-squares procedure, in order to obtain the best fitting to the experimental energy levels. This method produces gf- values that are in better agreement with their experimental values than the produced by the ab initio calculation. The temperature obtained was 5739.3 K, what is compatible with direct measurements made for cupper DC discharge.</description><subject>PHYSICS, MULTIDISCIPLINARY</subject><issn>0103-9733</issn><issn>1678-4448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRb0AiVL4BvwDKRM_4niDhMpTqsQCWEe2Mxaukriy3UX_nkARG8RiNNIdnZl7h5CrGla11HD9CjXwSivOGYAAgHYuDidk8Ts4I-c5bwGYBMEX5OYOC6YxTKaEONHo6W4weTS04LjDZMo-IbUHamjGMVSzGFJwZqAjlo_YX5BTb4aMlz99Sd4f7t_WT9Xm5fF5fbupHBeyVHXPtPaWMd9yLbyz3mptW6lnBVmLvVBOsUY2AqWwqK1SyjKvoZGai9nokqyOe7MLOMRuG_dpmg9234m7P4lnQB0Bl2LOCX23S2E06dDV0H396l_yEwASW2A</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Borges, F. O.</creator><creator>Cavalcanti, G. H.</creator><creator>Trigueiros, A. G.</creator><general>Sociedade Brasileira de Física</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope></search><sort><creationdate>20041201</creationdate><title>Determination of plasma temperature by a semi-empirical method</title><author>Borges, F. O. ; Cavalcanti, G. H. ; Trigueiros, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-1d299fb22f8394fcbfb99b85922fe28ed47c726564e54be9b777b2f9065934043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>PHYSICS, MULTIDISCIPLINARY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borges, F. O.</creatorcontrib><creatorcontrib>Cavalcanti, G. H.</creatorcontrib><creatorcontrib>Trigueiros, A. G.</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Brazilian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borges, F. O.</au><au>Cavalcanti, G. H.</au><au>Trigueiros, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of plasma temperature by a semi-empirical method</atitle><jtitle>Brazilian journal of physics</jtitle><addtitle>Braz. J. Phys</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>34</volume><issue>4b</issue><spage>1673</spage><epage>1676</epage><pages>1673-1676</pages><issn>0103-9733</issn><issn>1678-4448</issn><abstract>Doppler or Stark line broadening effects are generally used to determinate plasma temperature. These methods are difficult to apply to spectra of highly ionized atoms due to the short wavelengths involved. It is not at all easy to achieve sufficient wavelength resolution in this spectral range. In this case, a spectroscopic technique based on the relative intensities of lines must be used to measure the electron temperature in a plasma. However the relation of the measure of relative line intensity and the plasma electron temperature is complex and a number of issues must be examined for the diagnostic. In simple cases, only a two levels system need be considered. Here we introduce a semi-empirical method to determine the plasma temperature that takes into account multiple levels structure. In the theoretical model we consider a local thermodynamic equilibrium(LTE). The greatest difficult in the determination of plasma temperature using a multiple levels approach is overcome by calculating the transition probabilities in terms of the oscillator strength parameters. To check the method we calculated the oscillator strengths for the Cu I using a multi-configurational Hartree-Fock relativistic (HFR) approach. The electrostatic parameters were optimized by a least-squares procedure, in order to obtain the best fitting to the experimental energy levels. This method produces gf- values that are in better agreement with their experimental values than the produced by the ab initio calculation. The temperature obtained was 5739.3 K, what is compatible with direct measurements made for cupper DC discharge.</abstract><pub>Sociedade Brasileira de Física</pub><doi>10.1590/S0103-97332004000800030</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0103-9733
ispartof Brazilian journal of physics, 2004-12, Vol.34 (4b), p.1673-1676
issn 0103-9733
1678-4448
language eng
recordid cdi_scielo_journals_S0103_97332004000800030
source EZB-FREE-00999 freely available EZB journals
subjects PHYSICS, MULTIDISCIPLINARY
title Determination of plasma temperature by a semi-empirical method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20plasma%20temperature%20by%20a%20semi-empirical%20method&rft.jtitle=Brazilian%20journal%20of%20physics&rft.au=Borges,%20F.%20O.&rft.date=2004-12-01&rft.volume=34&rft.issue=4b&rft.spage=1673&rft.epage=1676&rft.pages=1673-1676&rft.issn=0103-9733&rft_id=info:doi/10.1590/S0103-97332004000800030&rft_dat=%3Cscielo_cross%3ES0103_97332004000800030%3C/scielo_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0103_97332004000800030&rfr_iscdi=true