Determination of plasma temperature by a semi-empirical method
Doppler or Stark line broadening effects are generally used to determinate plasma temperature. These methods are difficult to apply to spectra of highly ionized atoms due to the short wavelengths involved. It is not at all easy to achieve sufficient wavelength resolution in this spectral range. In t...
Gespeichert in:
Veröffentlicht in: | Brazilian journal of physics 2004-12, Vol.34 (4b), p.1673-1676 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doppler or Stark line broadening effects are generally used to determinate plasma temperature. These methods are difficult to apply to spectra of highly ionized atoms due to the short wavelengths involved. It is not at all easy to achieve sufficient wavelength resolution in this spectral range. In this case, a spectroscopic technique based on the relative intensities of lines must be used to measure the electron temperature in a plasma. However the relation of the measure of relative line intensity and the plasma electron temperature is complex and a number of issues must be examined for the diagnostic. In simple cases, only a two levels system need be considered. Here we introduce a semi-empirical method to determine the plasma temperature that takes into account multiple levels structure. In the theoretical model we consider a local thermodynamic equilibrium(LTE). The greatest difficult in the determination of plasma temperature using a multiple levels approach is overcome by calculating the transition probabilities in terms of the oscillator strength parameters. To check the method we calculated the oscillator strengths for the Cu I using a multi-configurational Hartree-Fock relativistic (HFR) approach. The electrostatic parameters were optimized by a least-squares procedure, in order to obtain the best fitting to the experimental energy levels. This method produces gf- values that are in better agreement with their experimental values than the produced by the ab initio calculation. The temperature obtained was 5739.3 K, what is compatible with direct measurements made for cupper DC discharge. |
---|---|
ISSN: | 0103-9733 1678-4448 |
DOI: | 10.1590/S0103-97332004000800030 |