Mathematical models in ruminant nutrition

Mathematical models can be used to improve performance, reduce cost of production, and reduce nutrient excretion by accounting for more of the variation in predicting requirements and feed utilization in each unique production situation. Mathematical models can be classified into five or more catego...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientia agricola 2005-01, Vol.62 (1), p.76-91
Hauptverfasser: Tedeschi, Luís Orlindo, Fox, Danny Gene, Sainz, Roberto Daniel, Barioni, Luís Gustavo, Medeiros, Sérgio Raposo de, Boin, Celso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mathematical models can be used to improve performance, reduce cost of production, and reduce nutrient excretion by accounting for more of the variation in predicting requirements and feed utilization in each unique production situation. Mathematical models can be classified into five or more categories based on their nature and behavior. Determining the appropriate level of aggregation of equations is a major problem in formulating models. The most critical step is to describe the purpose of the model and then to determine the appropriate mix of empirical and mechanistic representations of physiological functions, given development and evaluation dataset availability, inputs typically available and the benefits versus the risks of use associated with increased sensitivity. We discussed five major feeding systems used around the world. They share common concepts of energy and nutrient requirement and supply by feeds, but differ in structure and application of the concepts. Animal models are used for a variety of purposes, including the simple description of observations, prediction of responses to management, and explanation of biological mechanisms. Depending upon the objectives, a number of different approaches may be used, including classical algebraic equations, predictive empirical relationships, and dynamic, mechanistic models. The latter offer the best opportunity to make full use of the growing body of knowledge regarding animal biology. Continuing development of these types of models and computer technology and software for their implementation holds great promise for improvements in the effectiveness with which fundamental knowledge of animal function can be applied to improve animal agriculture and reduce its impact on the environment. Modelos matemáticos podem ser utilizados para melhorar a performance, reduzir os custos de produção, e minimizar a exceção de nutrientes através de melhores estimativas da exigência e utilização de alimentos em vários cenários produtivos. Modelos matemáticos podem ser classificados em cinco ou mais categorias dependendo da sua natureza. Um dos maiores problemas na construção de modelos matemáticos é o nível de agregação das equações. Os passos mais importantes são o estabelecimento do propósito do modelo, determinação da melhor combinação de equações empíricas e teóricas para representar das funções fisiológicas dado a disponibilidade de banco de dados, informações tipicamente encontradas a nível de campo, e os be
ISSN:0103-9016
1678-992X
0103-9016
DOI:10.1590/S0103-90162005000100015