Adsorption Properties of Magnetic CoFe2O4@SiO2 Decorated with P4VP Applied to Bisphenol A
In this study, the preparation and adsorption properties of cobalt ferrite core-shell nanoparticles coated with silica and decorated with poly(4-vinylpyridine) (CoFe2O4@SiO2-P4VP) applied to bisphenol A (BPA) adsorption were described. The CoFe2O4-based core was coated by a nanometric layer of silic...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Chemical Society 2023, Vol.34 (2), p.167-181 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the preparation and adsorption properties of cobalt ferrite core-shell nanoparticles coated with silica and decorated with poly(4-vinylpyridine) (CoFe2O4@SiO2-P4VP) applied to bisphenol A (BPA) adsorption were described. The CoFe2O4-based core was coated by a nanometric layer of silica under Stöber conditions and followed by coating with poly(4-vinylpyridine) via surface polymerization in miniemulsion. The characterizations involved transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared (FTIR), thermogravimetry (TGA), dynamic light scattering (DLS) and zeta potential. The polymeric core-shell nanoparticle showed a spherical structure with a magnetic core of ca. 11 nm and a layer of silica of ca. 4 nm. The amount of poly(4-vinylpyridine) that decorated the nanoparticle surface was verified by thermogravimetric analysis. CoFe2O4@SiO2-P4VP exhibited the capacity to adsorb bisphenol A. The chemometric model indicated a significant effect between the ionic strength and pH of the solution in the adsorption of bisphenol A. CoFe2O4@SiO2-P4VP presented a superior adsorption capacity towards BPA (46.6 mg g−1) in optimized conditions. The adsorption kinetics of BPA by CoFe2O4@SiO2-P4VP involved a pseudo-second order process. Also, the adsorption isotherm indicated a multilayer process with data well-adjusted by Freundlich equation. The nanomaterial CoFe2O4@SiO2-P4VP can be reused in adsorption of BPA for up to eight cycles. |
---|---|
ISSN: | 0103-5053 1678-4790 |
DOI: | 10.21577/0103-5053.20220096 |